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FIG. 6. Dependence of the diagonal components (top row) and off-diagonal components (bottom row) of the Reynolds stress anisotropy tensor b;; (left
column) and the dissipation rate anisotropy tensor e;; (right column) on the rotation ratio f/S at nondimensional time S¢=5.

is the largest. It is, however, strongly reduced for the strongly
growing cases with 0 <f/S§<1, where the spanwise compo-
nent becomes important. The center figure shows the gradi-
ents of the vertical velocity component €, ;. Again, the span-
wise gradient is strongly increased for the cases with
strongly growing turbulent kinetic energy. The right figure
shows the gradients of the spanwise velocity component €; ;.
For most cases, the vertical gradient shows the largest con-
tribution, but it is reduced for the cases with strongly grow-
ing turbulent kinetic energy. In general, by magnitude large
rotation ratios lead to large spanwise gradients of the veloc-
ity components. The cases with growing turbulent kinetic
energy, however, are characterized by strong vertical gradi-
ents of the velocity components.

C. Turbulence structure anisotropy tensors

In order to gain a more complete description of the struc-
ture of turbulence, we consider decompositions of the Rey-
nolds stress anisotropy tensor. For homogeneous turbulence,
following Kassinos et al..”® the structure dimensionality ten-
sor D;; can be determined from the velocity spectrum tensor
Ej(k)=ii;,

Kk
Dij = f ?Enn(k)dg)k- (7)

Here, a hat denotes the Fourier transform, a star the complex
conjugate, and k=(k,,k,,k;) is the wave vector. The struc-
ture dimensionality anisotropy tensor is then defined as
follows:

D; 1

Another measure introduced by Kassinos et al.® is the cir-
culicity tensor

L 9)

Here, ®=V Xu=(w,;,w,,w;) is the vorticity vector and k is
the magnitude of the wave vector. The circulicity anisotropy
tensor is then defined as follows:
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FIG. 7. Dependence of the diagonal components (top row) and off-diagonal components (bottom row) of the structure dimensionality anisotropy tensor d;;
(left column) and the circulicity anisotropy tensor fij (right column) on the rotation ratio f/S at nondimensional time St=5.

F, 1
=L =5 10
fzj Fkk 3 ij ( )

The Reynolds stress anisotropy tensor, structure dimension-
ality anisotropy tensor, and circulicity anisotropy tensors are
related,

bij+d;;+ f;;=0. (11)

Note that the circulicity anisotropy tensor is therefore deter-
mined by the Reynolds stress anisotropy tensor and the di-
mensionality anisotropy tensor.

The left column of Fig. 7 shows the diagonal (top) and
off-diagonal (bottom) components of the structure dimen-
sionality anisotropy tensor. For the case of homogeneous
shear flow with f/S=0, our results are consistent with those
reported by Kassinos et al.® In this case, we observe that
dyy=ds3>d;, which, according to Kassinos et al.”® sug-
gests that “the dimensionality is close to being axisymmetric
about the x;-axis.” For f/S=+40.5, an ordering d;;>d»,
>d,, is obtained. Otherwise, we observe dy; = d33<<d,,. For
the off-diagonal components, we observe that dj3 and d»;
vanish, while the component d;, assumes a value of about
—0.08, independent of the rotation ratio f/S. This value
again is in agreement with Kassinos et al®

The right column of Fig. 7 shows the diagonal (top) and
off-diagonal (bottom) components of the circulicity aniso-
tropy tensor, which “describes the large-scale structure of the
vorticity field.””® The nonzero values of f1» confirm that the
flow structures are inclined to the streamwise direction. For
growing turbulent kinetic energy, f; is the dominant compo-
nent. For negative f/S, we find f33>f;;>f5 and for f/S
>3, we observe f|;=f33> fa.

The corresponding wavenumber-dependent quantities
can be defined by shell averaging in Fourier space and yield
insight into the wavenumber distribution of different aniso-
tropy tensors. Figure 8 shows the wavenumber-dependent
components of the Reynolds stress anisotropy tensor b;; (left
column), the structure dimensionality tensor d;; (center col-
umn), and the circulicity anisotropy tensor f;; (right column)
for two values of the rotation ratios f/S=+0.5 (top row) and
f/S=+5 (bottom row) at nondimensional time St=5. Those
two cases were chosen to illustrate both energy-growing and
energy-decaying cases. The main conclusion inspecting these
plots is that the flows show no return to isotropy at large
wavenumber for all quantities and all flows. In addition, we
find a pronounced anisotropy at small wavenumbers and a
strong dependence of the values of the turbulence structure
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FIG. 8. Wavenumber dependence components of the Reynolds stress anisotropy tensor b;; (left column), structure dimensionality anisotropy tensor d;; (center
column), and circulicity anisotropy tensor f;; (right column) for two cases with f/S= +0 5 (top row) and f/S=+5 (bottom row) at nondlmensmnal time

St=35.

anisotropy tensors on the wavenumber. It remains to be veri-
fied if return to isotropy is observed at higher Reynolds
numbers.

Based on an energy, polarization, and helicity decompo-
sition of the three dimensional energy spectrum tensor £,
Cambon ef al.' suggested a decomposition of the Reynolds
stress anisotropy tensor b;; 1nt0 directional anisotropy b
and polarization anlsotropy b @

by=b+b. (12)

The structure dimensionality anisotropy tensor d;; and the
circulicity amsotropy tensor Jfij can be obtained as a linear
combination of b and b,; @

(e)
d sz] s

fz] b(e) z)_ (13)

l]

The authors'® showed that the directional anisotropy tensor is
correctly determined by linear theory.

D. Wavelet-based anisotropy measures

Space-scale decomposition of the flow is obtained by
applying the orthogonal wavelet transform to the velocity
field. Therefore, the velocity field uw=(u;,u,,u;) at a given
time instant is developed into an orthogonal wavelet basis
using Coiflet 12 wavelets.”” Note that the same decomposi-
tion can be applied to the vorticity field w=VXu
=(w,, w,,w3). The projection of one component u,(x) can be
represented by

Uo(X) = X @Y (x), (14)
A

with the subscript N\=(j,i,d), where j represents the scale
index, i the position, and d the direction. The orthogonal
wavelet coefficients are given by iy =(u,, ¥), where (,) de-
notes the L’-inner product. The wavelet coefficients measure
the fluctuations of u, at scale 27/ and around position i/2/ for
each of the seven possible directions d. The contribution of
the velocity component u, at scale 27 and direction d is
obtained by fixing j and d and summing only over i in Eq.
(14) and it is denoted by u’ Its contribution uf at scale 27/
is obtained by summation over i and d in Eq. (14) while
fixing j.

Parseval’s identity allows one to obtain directional en-
ergy contributions as functions of scale j.14 For the direc-
tional scale-dependent energy distribution of a velocity com-
ponent u,, we thus obtain

Ej’d—z u’duﬁd>. (15)

a

Summing over all scales, we get the directional energy of the
velocity component u,, in the direction d,

E = F. (16)
j

By construction, we obtain the total kinetic energy as
follows:
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FIG. 9. Dependence of the dissipation rate component €, g for 8=1,2 and 3 (top row) and directional energy component E‘fy/E for d=1,2, and 3 (bottom row)
on the rotation ratio f/S at nondimensional time Sr=5. The x;-component (left column), x,-component (center column), and x;-component (right column) are

shown.

(17)

E=> Ei=>E
J.d,a d,a

The bottom row in Fig. 9 shows the normalized directional
energy components E‘i/ E for the x, y, and z components.
These wavelet-based measures exhibit a striking similarity
with the normalized directional dissipation rate components
e;j/e. This is due to the fact that wavelet coefficients of
velocity are related to its gradients and discriminate the fluc-
tuations of velocity components between the seven possible
directions.

Figures 10 and 11 show the directional energy of the
flow for two cases with f/S=+0.5 and f/S=+5, respectively,
at nondimensional time S7=5. For the strongly growing case
with f/S=+0.5, the vertical velocity (v) in the spanwise di-
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FIG. 10. (Color online) Wavelet-based directional energy for f/S=+0.5 at
nondimensional time St=5.

rection (z) contains most of the energy, followed by the
downstream velocity (u) in the spanwise direction (z). For
the strongly decaying case with f/S=+5, however, the span-
wise (w) and downstream (u) velocities in the vertical direc-
tion (y) contain most of the energy, while vertical velocity
(v) is reduced. The figures also show that the mixed direc-
tions (xy, xz, yz, and xyz) are less significant. A finer reso-
lution of the anisotropy measures would require the use of
the continuous wavelet transform, which necessitates sub-
stantially more computational resources for three-
dimensional turbulence. Details on this technique applied to
two-dimensional cuts of three-dimensional turbulent flows
can be found in Ruppert-Felsot et al.*®

To study higher-order scale-dependent statistics, we de-

% of Energy

X y z Xy Xz yz Xyz
Directions

FIG. 11. (Color online) Wavelet-based directional energy for f/S=+5 at
nondimensional time St=5.
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FIG. 12. Directional scale-dependent flatness for f/S=+0.5 (top row) and f/S=+5 (bottom row). The u,-component (left column), u,-component (center

column) and u3-component (right column) are shown.

fine the p-th order centered moments of each component u,,
of the vector field u at scale j from its wavelet coefficients
(Ref. 27)

2-1 7
Mp,j:7 ><23j% g[ﬁk_Mj]p' (18)
Here,
2-1 7
M= 2 X a7 x 2Y), (19)
i=0 d=1

denotes the mean value of the moment at scale j. The scale-
dependent flatness of a velocity component u,, is defined as
follows:

Fo= MZJA/(MZ]-)Z. (20)

It is closely related to the standard deviation of the spectral
distribution of energy, which illustrates that F' f yields a mea-
sure of the relative spatial fluctuations of the spectral energy
density.14

The scale index j is related to a wavenumber k; by the
following relationship:

kj=ko2'. (21)

Here, k; is the centroid wavenumber of the mother wavelet,
which is constant for each type of wavelet, e.g., ko= 0.77 for
the Coiflet 12 used here. Wavelets have a constant relative
bandwidth, which means that with increasing j, the spectral

support of the wavelet increases, and thus the spectral selec-
tivity of the wavelet decreases. The scale-dependent distribu-
tions of energy or flatness can be related to wavenumber
distributions, in particular, to energy spectra.25

The directional scale-dependent flatness of the three ve-
locity components is shown in Fig. 12. Here, we focus only
on two cases, one for f/S=+0.5 (top row), which is repre-
sentative of a flow with strongly growing turbulent kinetic
energy, and one for f/S=+5 (bottom row), which represents
cases with decaying turbulent kinetic energy. A general ob-
servation is a strong increase of the flatness with wavenum-
ber, which reflects the flow intermittency. The intermittency
here is related to the dissipation range28 and the resolution of
the simulations does not allow to observe a possible inertial
range intermittency. In Ref. 14, it was shown that an aniso-
tropy of the small spatial scales can cause an anisotropy of
the directional flatness which is increased in certain direc-
tions due to the depletion of energy, affecting particular re-
gions in Fourier space. Here, it is also observed that the
small-scale intermittency is anisotropic. The growth of flat-
ness of all velocity components is the strongest in the
streamwise direction, except for the case f/S=+0.5 where
the flatness of the u; velocity component behaves similarly
in all directions due to the strong shear production. At mod-
erate wavenumbers 2=k= 10, a flatness value around 3 is
obtained in all cases, indicating a Gaussian-like behavior.
Even though the flatness is slightly different for the two
cases, it does not seem straightforward to relate the large-
scale production of kinetic energy directly to the directional
intermittency of the flow.
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E. Wavelet-based scale-dependent
geometrical measures

Additional geometrical information about the flow can
be obtained from the velocity helicity H, and vorticity helic-
ity H,,

H,=u-(VXu), H,=w- (VX w). (22)
After averaging over space, both quantities can be related by
the helicity transport equation d{(H,)/dt=-2v(H )+2(F).
The term F=f-w accounts for any forcing terms f in the
momentum equation, and it vanishes for linear effects, such
as shear and rotation. A corresponding evolution equation for
three-dimensional helicity spectrum was first given in Cam-
bon and Jacquin.16 This equation also includes a transfer
term, describing redistribution of helicity, determined by
triple correlations. As in the case of the turbulent kinetic
energy equation, the transfer term vanishes after averaging.

The present flow initially does not contain mean helicity
and it will thus remain free from it. However, this does not
concern the local helicity and regions with strong helicity
can exist in a flow free from mean helicity. In the following,
we will concentrate on this local helicity and its statistics.

The relative helicities of velocity and vorticity measure
the cosine of the angle between the two vector quantities and
are defined as follows:

u-(VXu)

B R (VX w)
C VX

eIV X o]

(23)

» %)

The relative velocity helicity 4, allows one to distinguish
between helical structures (swirling motion) and nonhelical
structures. For helical structures, /4, has values of *1, which
correspond to alignment or antialignment of vorticity and
velocity, respectively. For nonhelical structures, two-
dimensionalization of the flow occurs, vorticity is perpen-
dicular to velocity, and the velocity helicity 4, assumes a
value /,=0. Using the vector identity V X w=—Au, the rela-
tive vorticity helicity s, measures the cosine of the angle
between vorticity and the negative Laplacian of velocity,
which is related to dissipation. The velocity helicity &, and
vorticity helicity 4, can also be interpreted as the correlation
coefficients between u with @ and w with VX w, respec-
tively.

Scale-dependent helicities %, and h,; can be defined by
replacing u and w in Eq. (23) by #/ and «/, respectively, as
recently introduced in Ref. 21. Thus, geometrical statistics
can be obtained at different scales of the flow.

Figures 13 and 14 show the probability distribution func-
tions (PDFs) of the relative helicities of velocity and vortic-
ity, respectively. The PDFs of &, show a maximum for £,
=0 for cases with growing turbulent kinetic energy (f/S=0
and f/S=+0.5), indicating a higher probability for two-
dimensional motion. For decaying cases, a maximum for
h,* 1 is observed, corresponding to a higher probability for
helical motion. The PDFs of 4, show a maximum for 4,%* 1
for all cases and the alignment or antialignment of vorticity
with the negative Laplacian of velocity is particularly pro-
nounced in the case of strong rotation (f/S= *5).

Phys. Fluids 22, 085101 (2010)
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FIG. 13. Velocity helicity distribution /, at nondimensional time St=5.

Figure 15 shows the scale-dependent velocity helicity
PDF (left column) and vorticity helicity PDF (right column)
for cases with f/S=+0.5 (top row) and f/S=+5 (bottom row)
at nondimensional time St=5. The scale-dependent velocity
helicity PDFs confirm the significant difference between the
two cases f/S=+0.5 and +5, representing turbulence growth
and decay, respectively, that we have mentioned above. For
the former case, the PDFs show a pronounced two-
dimensional behavior at large scales (j=3,4,5), while for
the latter no peak around 4,;=0 can be observed. The prob-
ability to have swirling motion at small scales is also more
pronounced for f/S=+5. Similar conclusions hold for the
scale-dependent distributions of vorticity helicity. These re-
sults clearly show that the mechanism which distinguishes
the cases f/S=+0.5 and +5 is related to the large scales, as
we have conjectured in Sec. III A. Apparently, in the f/S
=+0.5 case, the large scale flow shares some features with
two-dimensional turbulence and the energy cascade is thus
less efficient in transporting energy toward the small scales
compared to three-dimensional turbulence.

Sanada® conjectured that (H,) and (H,,) have a tendency
to have the same sign. This tendency also holds for the cor-
responding pointwise quantities H, and H,, (Ref. 30). If this
conjecture holds, H,, acts as a “kind of viscous dissipation”
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FIG. 14. Vorticity helicity distribution £, at nondimensional time St=5.
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FIG. 15. Scale-dependent velocity helicity distribution A, (left column) and vorticity helicity distribution %, (right column) for f/S=+0.5 (top row) and for

f/S=+5 (bottom row) at nondimensional time St=35.

for H,, independent of its sign. To verify Sanada’s conjecture
that both velocity helicity and vorticity helicity have the
same sign, we show in Fig. 16 the joint probability distribu-
tion function p(h,,h,). For all flows, the joint PDFs of A,
and h, are not statistically independent. We find a higher
probability in the two quadrants in which %, and A, have the
same sign as in those with opposite signs. The highest prob-
ability is observed in lower left and upper right corners, cor-
responding to a high probability to find alignment or anti-
alignment of u# with @ and w with VX w®. This result
supports the conjecture reported by Sanada® and Galanti and
Tsinober.*” For comparison, we also added the joint PDF for
independently uniformly distributed velocity helicity and
vorticity helicity fields, which results in a uniform joint PDF
with mean value 1/4.

IV. CONCLUSIONS

Nine direct numerical simulations of homogeneous tur-
bulence with shear and rotation have been performed and
analyzed for this study. The turbulent kinetic energy was
found to grow strongly in the antiparallel configuration with
0<f/S<1 and to decay otherwise. The growth is due to an
increased normalized turbulence production P/SK=-2b,,
that is directly related to the only nonzero off-diagonal com-
ponent of the Reynolds stress anisotropy tensor. It was also

observed that the growth rate of the turbulence is related to
the inclination angle of vortical structures relative to the
downstream direction.®

The anisotropy of the flows is investigated with conven-
tional measures, such as the Reynolds stress anisotropy ten-
sor, the dissipation rate anisotropy tensor, and the normalized
components of the dissipation rate. In addition, turbulence
structure anisotropy tensors are considered and results for
sheared turbulence are in agreement with Kassinos et al.”
The wavenumber-dependent tensors showed no return to
isotropy at large wavenumbers. The directional energy of the
flow, obtained from orthogonal wavelet decomposition of the
velocity field, allows one to give an alternative measure of
the anisotropy of the flow. Wavelets, such as structure func-
tions, are sensitive to velocity differences in the different
directions and allow to characterize streamwise, vertical, and
spanwise anisotropy. Furthermore, orthogonal wavelets have
the advantage that, due to their orthogonality, the energies
contained in the different directions sum up to the total en-
ergy, unlike structure functions or one-dimensional spectra.
It has been shown in this paper that these directional energies
capture the properties of velocity gradients in rotating shear
turbulence. For the strongly growing case with f/S=+0.5,
the spanwise differences of vertical velocity contain most of
the energy, followed by the spanwise differences of down-
stream velocity. For the strongly decaying case with f/S
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FIG. 16. (Color online) Joint PDFs of velocity helicity &, with vorticity helicity h,, for cases with f/S=0 (top left), f/S=+0.5 (top center), f/S=-0.5 (bottom
center), f/S=+5 (top right), f/S=-5 (bottom right), and uniformly distributed random fields (bottom left).

=+5, however, the vertical differences of spanwise and
downstream velocities contain most of the energy, while ver-
tical velocity is strongly reduced. It has thus been confirmed
that wavelet-based directional energy measures agree with
conventional measures.

The intermittency of the different flows studied here has
been quantified using scale-dependent flatness in the differ-
ent flow directions. Small-scale intermittency has been ob-
served in most cases with an increased level of intermittency
in the streamwise direction. At intermediate scales, a
Gaussian-like behavior has been found. These observations
confirm that the scale-dependent flatness is well suited to
quantify the flow intermittency in different directions.

The geometrical statistics of the flows have been ana-
lyzed by considering PDFs of velocity helicity and of vortic-
ity helicity. For the cases with growing turbulent kinetic en-
ergy, the local relative helicity indicates a tendency toward
two-dimensional motion. However, for the decaying cases,
helical motion (reflected by an alignment or antialignment of
velocity and vorticity) is mainly observed. A scale-dependent
study of helicity shows that for all cases small scales exhibit
helical motion, while two-dimensionalization is observed at
larger scales. It has thus been shown that the helicity of the
flow strongly depends on the scale.

Joint PDFs of velocity helicity and vorticity helicity in-
dicate a strong correlation of the signs of these quantities.
This observation supports the conjectures reported by
Sanada®® and Galanti and Tsinober.*® The results suggest that
vorticity helicity tends to diminish velocity helicity for rotat-
ing and sheared turbulence.
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