
University of San Diego University of San Diego 

Digital USD Digital USD 

Mathematics: Faculty Scholarship Department of Mathematics 

12-5-2008 

Recursive Dispersion Relations in One-Dimensional Periodic Recursive Dispersion Relations in One-Dimensional Periodic 

Elastic Media Elastic Media 

Ani P. Velo 

George A. Gazonas 

Erwin Bruder 

Nancy Rodriguez 

Follow this and additional works at: https://digital.sandiego.edu/mathematics-faculty 

 Part of the Mathematics Commons 

https://digital.sandiego.edu/
https://digital.sandiego.edu/mathematics-faculty
https://digital.sandiego.edu/mathematics
https://digital.sandiego.edu/mathematics-faculty?utm_source=digital.sandiego.edu%2Fmathematics-faculty%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digital.sandiego.edu%2Fmathematics-faculty%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages


SIAM J. APPL. MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 69, No. 3, pp. 670–689

RECURSIVE DISPERSION RELATIONS IN ONE-DIMENSIONAL
PERIODIC ELASTIC MEDIA∗

ANI P. VELO† , GEORGE A. GAZONAS‡ , ERWIN BRUDER†§ , AND

NANCY RODRIGUEZ†

Abstract. A frequency bandgap is a range of wave frequencies that are prohibited from passing
through a medium. The dispersion relation, which links the frequency to the wave number, enables
us to illustrate the bandgaps. In [E. H. Lee, “A survey of variational methods for elastic wave
propagation analysis in composites with periodic structures,” in Dynamics of Composite Materials,
E. H. Lee, ed., ASME, New York, 1972, pp. 122–138] and [E. H. Lee and W. H. Yang, SIAM
J. Appl. Math., 25 (1973), pp. 492–499] the dispersion relation was studied theoretically for the
one-dimensional periodic structure made of two materials arranged symmetrically with respect to
the center of the cell. Their dispersion relation formulas can be similarly extended to a multilayered
symmetric cell configuration, but not to a general (nonsymmetric) cell configuration. The general
model was considered in [M. Shen and W. Cao, J. Phys. D, 33 (2000), pp. 1150–1154], where each
unit cell of the periodic layered structure contains several sublayers of arbitrary lengths and materials.
Using the transfer matrix method, the dispersion relation was successfully derived, involving very
lengthy explicit formulas. In this paper, we generalize the work of Lee and Yang and develop
recursive dispersion relation formulas for a general cell configuration. The recursive formulas are
easy to implement and, through several numerical experiments, successfully corroborate the results
of Shen and Cao.

Key words. dispersion relation, recursive formulas, wave propagation, Floquet theory, periodic
layered media

AMS subject classifications. 35C05, 35R05
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1. Introduction. The existence of bandgaps in one-dimensional periodic elas-
tic media appears to have been first established by Lord Rayleigh [17], and a good
review of the early work on wave propagation in periodic elastic media can be found
in Brillouin’s classic text [2]; a more recent comprehensive review that outlines the
development of the “band theory” for electrons, photons, and phonons can be found
in Kushwaha [10]. A variety of technological applications has been suggested for
phononic bandgap materials which include transducers, acoustic filters, or barriers
for noise reduction, and even as a means for mitigating the effects of seismic surface
waves. The study of phonons and phononic bandgaps associated with elastic wave
propagation in periodic elastic media have also been used to study quantum field
effects such as tunneling phenomena [24].
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San Diego, CA 92110 (avelo@sandiego.edu).
‡U.S. Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Prov-

ing Ground, MD 21005 (gazonas@arl.army.mil).
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Exact dispersion relations for harmonic waves in an infinite one-dimensional
medium consisting of plane parallel alternating layers of two homogeneous isotropic
elastic materials were derived in [20]. Their exact dispersion curves compare well with
the “effective stiffness” theory they developed for the lowest vibrational modes over
a wide range of wave numbers. Using a transfer matrix formalism and bypassing the
use of Floquet theory, “pseudo-”stop bands and pass bands were computed in [3] for
finite, periodically layered media. They showed that for a finite system containing
at least ten cells, the characteristics of the second stop band compare well with that
predicted in an infinite medium [11], [12] for a 2-2 composite consisting of ceramic
and polymer constituents. This problem was further examined in [7], where it was
shown that, in some instances, only one or two unit cells could be sufficient to depict
the “frequency bandedness” seen in the infinite medium. Dispersion effects in finite
periodic structures, which include viscous damping and the use of genetic algorithms
for tailoring their frequency response characteristics, are also considered in [8].

Interestingly, the transfer matrix formalism has been successfully used for some
time by geophysicists (e.g., [21], [5], [16], [1]), and for finite, layered Goupillaud-type
(equal travel time) media [4], also known as the so-called communication matrix ap-
proach [19], [22], [9]. These works are not usually cited in prior work by the “bandgap”
community, but are included here to emphasize their importance in providing insight
and a framework for the analysis of dispersion effects in periodic elastic media.

Returning our attention once again to infinite media, [11] and [12] study the dis-
persion relation in an infinite strip of a periodically repeated cell with length or period
a. According to their model, the cell is composed of two homogeneous elastic mate-
rials: the filler (f) and the matrix material (m). These materials are symmetrically
arranged with respect to the center of the unit cell as shown in Figure 1.

m                          f                     m

x
-a/2                              -b/2     0      b/2                              a/2

Fig. 1. Symmetric unit cell made of two materials, used in [11], [12].

The material density ρ and elastic modulus η are piecewise constant functions,
taking constant values with subscripts f and m in the filler and matrix material
regions, respectively. The density ρ and the elastic modulus η vary periodically along
the strip with position x and period a,{

ρ(x + a) = ρ(x),
η(x + a) = η(x).

Figure 2 displays the density function within a single (unit) cell, assuming that
ρf ≤ ρm. Since the cell is periodically repeated in the infinite strip, the density graph
shown in Figure 2 is also periodically repeated.

The general model was considered in [18], where each unit cell of the periodic lay-
ered structure contains several sublayers of arbitrary lengths and materials. They were
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−b/2

f

−a/2 a/20

ρ

mρ

ρ

x

b/2

Fig. 2. Density in a symmetric unit cell made of two materials.

able to successfully derive the dispersion relation using the transfer matrix method,
while involving very long explicit formulas.

In this paper, we generalize the work of [11], [12] and develop recursive dispersion
relation formulas for a general cell configuration. The recursive formulas are easy to
implement and, through several numerical experiments using Maple [15], successfully
corroborate the results of [18].

Unlike the (two-material) symmetric cell configuration studied in [11], [12], the
implicit dispersion relation for a general cell configuration appears to be more com-
plex. The process of deriving an implicit recursive dispersion relation involves the
construction of basic solutions in the unit cell, which provides more insight on how
the properties of such solutions relate to the cell configuration. This is demonstrated
through two approaches, which we identify as the central expansion approach and the
quasi-symmetric limiting approach.

As shown in [11], [12], we begin with the wave equation with periodic coefficients
η and ρ, described by

(1)
∂[η ∂U

∂x ]
∂x

= ρ
∂2U

∂t2
.

Using separation of variables, we assume that the displacement U(x, t) can be
expressed as

(2) U(x, t) = u(x)φ(t),

and (1) reduces to the second order ordinary differential equation with periodic coef-
ficients,

(3)
d

dx

[
η
du

dx

]
+ ρω2u = 0.

According to the Floquet theory, for a fixed ω, the solution u(x) in (3) is of the form

(4) u(x) = υ(x)eiqx,

where υ(x) is a periodic function with the same period a as the coefficients η and ρ.
Due to the quasi-periodic recursive relation that follows from (4), we have

u(x + a) = u(x)eiqa,
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Fig. 3. Even eigenfunction in a symmetric cell of two materials and three layers.
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Fig. 4. Odd eigenfunction in a symmetric cell of two materials and three layers.

and the problem of finding the solution u(x) along the strip is reduced to the single
unit cell −a/2 ≤ x ≤ a/2, where the following quasi-periodic boundary conditions
apply:

(5)

{
u(a/2) = u(−a/2)eiqa,

u′(a/2) = u′(−a/2)eiqa.

The solution of (3) in the unit cell, subject to the boundary conditions (5), is
then expressed as a linear combination of two eigenfunctions/linearly independent
solutions of (3). For convenience, the two eigenfunctions are chosen to be even ue(x)
and odd uo(x) functions along the symmetric cell studied in [11], [12]; see Figures 3
and 4. The solution of (3),

(6) u(x) = ue(x) + Cuo(x),
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satisfies the quasi-periodic boundary conditions (5) if

(7) C = i
ue(a/2)
uo(a/2)

tan
qa

2
and C = −i

u′
e(a/2)

u′
o(a/2)

cot
qa

2
.

According to [11], [12], the compatibility of the two relations above results in the
implicit form of the dispersion relation,

(8)
ue(a/2)
uo(a/2)

tan
qa

2
= −u′

e(a/2)
u′

o(a/2)
cot

qa

2
.

Further simplifications imply the following equivalent forms:

tan2
(qa

2

)
= −u′

e(a/2)uo(a/2)
u′

o(a/2)ue(a/2)
or

(9) cos(qa) =
u′

o(a/2)ue(a/2) + u′
e(a/2)uo(a/2)

u′
o(a/2)ue(a/2) − u′

e(a/2)uo(a/2)
.

The dispersion relation is then obtained after the construction of the even and odd
eigenfunctions ue(x) and uo(x) in the unit cell, and their substitution into (8) or (9).
As discussed in [11], [12], due to (4), it is only necessary to consider the wave number q
limited to the domain 0 ≤ q ≤ π/a. The dispersion relation graph displays a banded
frequency spectrum, comprising bands which transmit Floquet waves and no pass
bands which do not.

2. Generalized form of the dispersion relation. In this section, we derive
the dispersion relation for a general (unit) cell configuration, made of an arbitrary
number of layers and materials. The steps involved are summarized below, and are
generalizations of the work of [11], [12] discussed earlier. Through the rest of the
paper, the interval of the unit cell with length a is [−b, d]. Here 0 < b, d < a, and
b+d = a. In the special case of a symmetric cell configuration seen before, b = d = a

2 .
(i) The application of Floquet’s theorem for (3), with ρ and η corresponding to

the general (unit) cell configuration, yields two quasi-periodic conditions,{
u(x + a) = u(x)eiqa,

u′(x + a) = u′(x)eiqa.

Evaluating the conditions above at x = −b, we obtain the generalization of the bound-
ary conditions (5),

(10)

{
u(d) = u(−b)eiqa,

u′(d) = u′(−b)eiqa.

(ii) The solution u = u(x) of (3) and (10) may be written in a general form
similar to (6) as

(11) u = C1u1 + C2u2.

Here u1 = u1(x) and u2 = u2(x) are two eigenfunctions/linearly independent solutions
of (3), to be constructed later, while the constants C1 and C2 are unknown. For a
symmetric cell configuration, such as the one studied in [11], [12], u1 and u2 become
even and odd functions.
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(iii) As a generalization of (7), after substituting (11) into the quasi-boundary
conditions (10), we obtain a linear homogeneous system of equations for the unknowns
C1 and C2,

(12)

{
(u1(d) − u1(−b)eiqa)C1 + (u2(d) − u2(−b)eiqa)C2 = 0,

(u′
1(d) − u′

1(−b)eiqa)C1 + (u′
2(d) − u′

2(−b)eiqa)C2 = 0.

(iv) Seeking a nontrivial/nonzero solution, we set the determinant of the sys-
tem (12) to zero, a condition which replaces the compatibility conditions used earlier
in (7)–(8) by [11], [12]. This yields the ω = ω(q) relation of the form

(13)
(u1(d) − u1(−b)eiqa)(u′

2(d) − u′
2(−b)eiqa)

= (u′
1(d) − u′

1(−b)eiqa)(u2(d) − u2(−b)eiqa).

Equation (13) represents the dispersion relation for a general cell configuration in its
implicit complex form.

(v) After a few manipulations of (13), using the property of the Wronskian
W (x) discussed below, we obtain the dispersion relation in its implicit real form.
The Wronskian W (x) of u1(x) and u2(x), two linearly independent solutions of the
differential equation (3), is given by

W (x) = u1(x)u′
2(x) − u′

1(x)u2(x).

It directly follows from (3) that

d

dx
[η(x)W (x)] = 0,

and therefore,

W (x) =
C

η(x)
,

where C is a constant. Assuming that η(−b) = η(d), one deduces that W (−b) = W (d).
Returning our attention to (13), after multiplying and reorganizing the terms, we
obtain

(14) W (d) − J(−b, d)eiqa + W (−b)ei2qa = 0,

where J(−b, d) = u1(−b)u′
2(d) + u1(d)u′

2(−b) − u′
1(−b)u2(d) − u′

1(d)u2(−b).
Under the assumption that η(−b) = η(d), one deduces that W (−b) = W (d) and

the relation (14) becomes

W (−b)[eiqa + e−iqa] = J(−b, d).

From here the dispersion relation is expressed in its implicit real form as

2 cos(qa) =
J(−b, d)
W (−b)

,

or equivalently

(15) 2 cos(qa) =
u1(−b)u′

2(d) + u1(d)u′
2(−b) − u′

1(−b)u2(d) − u′
1(d)u2(−b)

u1(−b)u′
2(−b) − u′

1(−b)u2(−b)
.
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Further simplifications follow if u1(x) and u2(x) are chosen to satisfy u1(−b) =
u′

2(−b) = 1 and u′
1(−b) = u2(−b) = 0. Then W (−b) = 1 and the implicit dispersion

relation,

2 cos(qa) =
J(−b, d)
W (−b)

,

takes the form

2 cos(qa) = u1(d) + u′
2(d).

Similar arguments can be found in [14].
A simplified form of (15) used to express the dispersion relation for the (two-

material) symmetric cell configuration was derived in [11], [12] and given by (9).
Indeed, when b = d = a

2 , we obtain

(16) 2 cos(qa) =
u1(−a

2 )u′
2(

a
2 ) + u1(a

2 )u′
2(−a

2 ) − u′
1(−a

2 )u2(a
2 ) − u′

1(
a
2 )u2(−a

2 )
u1(−a

2 )u′
2(−a

2 ) − u′
1(−a

2 )u2(−a
2 )

.

Due to the symmetry of the cell configuration, u1 and u2 become even and odd
functions, respectively. This means that{

u1(a
2 ) = u1(−a

2 ),
u′

1(
a
2 ) = −u′

1(−a
2 )

and

{
u2(a

2 ) = −u2(−a
2 ),

u′
2(

a
2 ) = u′

2(−a
2 ).

After substituting these relations into (16) and replacing u1 = ue and u2 = uo,
we obtain the dispersion relation (9), as seen before in [11], [12].

As a conclusion, relation (15) subject to the boundary requirement η(−b) = η(d)
represents the generalized form of the dispersion relation (9) derived in [11], [12]. This
is also confirmed by our numerical experiments with the choice of the unit cell boxed
in Figure 5, with border layers occupied by the same material, ensuring the same
value for η(x) and therefore the same value for W (x) along the border layers.

• • • M              1         2      3   • • • M 1             2      3       • • • M      • • •

Fig. 5. Unit cell selection in a periodic medium with a general cell configuration.

3. Recursive formula of the dispersion relation using the central ex-
pansion approach. In order to develop the generalized dispersion relation (15), we
need to find two eigenfunctions u1(x) and u2(x) of (3) in a unit cell of our choice.
The unit cell of choice, used in the central expansion approach, is shown in the last
diagram of Figure 6. This is obtained after shifting and renumbering the general cell



RECURSIVE DISPERSION RELATIONS IN ONE-DIMENSIONAL MEDIA 677

• • •

Fig. 6. The stages of development of the central expansion approach for a given general cell
configuration of M-layers. Here N+ = N− = N , where N = �M

2
� + 1 or N = �M

2
�.

of M -layers. The purpose of the shifting is to have the border layers made of the
same material to ensure that η(−b) = η(d), which implies that W (−b) = W (d) and
therefore (15) holds. The purpose of the renumbering is to create a central layer in
the cell similar to the three-layered symmetric cell configuration previously studied
in [11], [12]. In the renumbered scheme, N = �M

2 � + 1, unless the cell already has
an odd number of layers M and the border layers are made of the same material, in
which case N = �M

2 �. The (−) and (+) superscripts on the renumbered cell diagram
of Figure 6 are used for the layers numbered 2, 3, . . . , N to indicate, respectively, their
left and right positions with respect to the central layer. The central layer is marked 1̃
to distinguish it from the layers on the other diagrams marked 1.

As a result, we may follow the method of [11], [12]. We begin with the solution
in the central layer of the cell and expand it to the right and left layers using the
continuity conditions of stress and displacement at the layer interfaces. Indeed, in
a given layer of the cell, with constant material properties ρ and η and wave speed
c =

√
η/ρ, the solution of (3) is of the form

(17) u(x) = A cos
(ω

c
x
)

+ B sin
(ω

c
x
)

.

In the notation that follows ρ±j , η±
j , and wave speed c±j =

√
η±

j /ρ±j indicate the corre-
sponding values for the jth layer, j = 2, . . . , N , located to the right ((+) superscript)
or left ((−) superscript) of the central layer with j = 1.
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As indicated in [11], [12], it is convenient to choose the two eigenfunctions u1(x)
and u2(x) to be even and odd functions in the central layer,

u1(x) = cos
(

ω

c1
x

)
, −b1 < x < d1,(18)

u2(x) = sin
(

ω

c1
x

)
, −b1 < x < d1.(19)

The expansion of these solutions to the right and left layers would be of the form (17),
and the eigenfunction u1(x) along the unit cell [−b, d] can be given as

u1(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A+
N cos

(
ω
c+

N

(x − dN−1)
)

+ B+
N sin

(
ω

c+
N

(x − dN−1)
)

for dN−1 ≤ x ≤ dN ,

...

A+
3 cos

(
ω
c+
3

(x − d2)
)

+ B+
3 sin

(
ω
c+
3

(x − d2)
)

for d2 ≤ x ≤ d3,

A+
2 cos

(
ω
c+
2

(x − d1)
)

+ B+
2 sin

(
ω
c+
2

(x − d1)
)

for d1 ≤ x ≤ d2,

cos
(

ω
c1

x
)

for −b1 ≤ x ≤ d1,

A−
2 cos

(
ω
c−2

(x + b1)
)

+ B−
2 sin

(
ω
c−2

(x + b1)
)

for −b2 ≤ x ≤ −b1,

A−
3 cos

(
ω
c−3

(x + b2)
)

+ B−
3 sin

(
ω
c−3

(x + b2)
)

for −b3 ≤ x ≤ −b2,

...

A−
N cos

(
ω
c−N

(x + bN−1)
)

+ B−
N sin

(
ω
c−N

(x + bN−1)
)

for −bN ≤ x ≤ −bN−1.

(20)

Using vector notation we denote

v±j =

[
A±

j

B±
j

]

for j = 1, . . . , N .
The coefficients in (20), derived by the continuity conditions at the layer inter-

faces, are given by the recursive relations

(21) v±j+1 = M±
j v±j ,

where the matrix M±
j and the constant parameters are, respectively, given by

(22) M±
j =

[
cosλ±

j ± sinλ±
j

∓p±j sinλ±
j p±j cosλ±

j

]

and

(23)

⎧⎪⎪⎨
⎪⎪⎩

λ+
j = ω

c+
j

(dj − dj−1), λ−
j = ω

c−j
(bj − bj−1), p±j =

η±
j c±j+1

η±
j+1c±j+1

,

v±1 =
[

A±
1

B±
1

]
=

[
1
0

]
, d0 = 0, b0 = 0



RECURSIVE DISPERSION RELATIONS IN ONE-DIMENSIONAL MEDIA 679

for j = 1, . . . , N − 1. Here A+
n and B+

n are the coefficients of the eigenfunction u1(x)
along the nth right layer, while A−

n , B−
n are the coefficients along the nth left layer.

The layer interfaces are located at −b = −bN < −bN−1 < · · · < −bn < · · · < −b1 <
d1 < · · · < dn < · · · < dN−1 < dN = d. Here b1 = d1, b + d = a and bn > 0, dn > 0
for n = 1, 2, . . . , N . Notice that the eigenfunction u1(x) is even in the central layer,
but it does not necessarily remain even after it expands to the other layers of the cell;
see Figure 7. The cell in Figure 7 is composed of five layers. Notice that at the layer
interfaces, u1(x) develops corners, as expected from the stress continuity condition.

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

–0.6 –0.4 –0.2 0.2

u1(x)

x

-b3 = -5/8 -b2 = -1/4 -b1 = -1/8 d1 = 1/8 d2 = 3/16 d3 = 3/8

Fig. 7. Eigenfunction u1(x) in a nonsymmetric cell of three materials and five layers. Addi-
tional parameters involved in (20) are ω = c1 = c±2 = c±3 = 1, p±1 = η1

η2
= 4, and p±2 = η2

η3
= 2.

Similarly, we determine the eigenfunction u2(x) in the unit cell [−b, d] as

u2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A∗+
N cos

(
ω
c+

N

(x − dN−1)
)

+ B∗+
N sin

(
ω

c+
N

(x − dN−1)
)

for dN−1 ≤ x ≤ dN ,

...

A∗+
3 cos

(
ω
c+
3

(x − d2)
)

+ B∗+
3 sin

(
ω
c+
3

(x − d2)
)

for d2 ≤ x ≤ d3,

A∗+
2 cos

(
ω
c+
2

(x − d1)
)

+ B∗+
2 sin

(
ω
c+
2

(x − d1)
)

for d1 ≤ x ≤ d2,

sin
(

ω
c1

x
)

for −b1 ≤ x ≤ d1,

A∗−
2 cos

(
ω
c−2

(x + b1)
)

+ B∗−
2 sin

(
ω
c−2

(x + b1)
)

for −b2 ≤ x ≤ −b1,

A∗−
3 cos

(
ω
c−3

(x + b2)
)

+ B∗−
3 sin

(
ω
c−3

(x + b2)
)

for −b3 ≤ x ≤ −b2,

...

A−
N cos

(
ω
c−N

(x + bM−1)
)

+ B−
N sin

(
ω
c−N

(x + bN−1)
)

for −bN ≤ x ≤ −bN−1.

(24)

Using vector notation we denote v∗±j =
[ A∗±

j

B∗±
j

]
for j = 1, . . . , N . The coefficients
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of (24) are defined by the same recursive relations described in (21),

(25) v∗±j+1 = M±
j v∗±j ,

with

(26) v∗±1 =
[

A∗±
1

B∗±
1

]
=

[
0
1

]
.

The matrix M±
j and the constant parameters d0, b0, λ±

j , and p±j for j = 1, . . . , N − 1
are given as before in (22)–(23).

Here A∗+
n and B∗+

n are the coefficients of the eigenfunction u2(x) along the nth
right layer, while A∗−

n , B∗−
n are the coefficients along the nth left layer. Notice that

u2(x) is odd in the central layer, but it does not necessarily remain odd after it
expands to the other layers of the cell; see Figure 8. The cell in Figure 7 is composed
of five layers. Notice that at the layer interfaces, u2(x) develops corners, as expected
from the continuity of the stress condition.

–4

–3

–2

–1

0

1

2

3

4

–0.6 –0.4 –0.2 0.2

u2(x)

x

d1 = 1/8 d2 = 3/16 d3 = 3/8

-b3 = -5/8 -b2 = -1/4 -b1 = -1/8

Fig. 8. Eigenfunction u2(x) in a nonsymmetric cell of three materials and five layers. Addi-
tional parameters involved in (24) are ω = c1 = c±2 = c±3 = 1, p±1 = η1

η2
= 4, and p±2 = η2

η3
= 2.

After evaluating u1(x) and u2(x) at the boundaries of the cell located at x = −b
and x = d, and then substituting these expressions into the general implicit formula
of the dispersion relation (15), we obtain the following expressions for the numerator
and the denominator, respectively:

u1(−b)u′
2(d) + u1(d)u′

2(−b) − u2(d)u′
1(−b) − u2(−b)u′

1(d)

=
ω

cN
(A−

NB∗+
N + A+

NB∗−
N − A∗+

N B−
N − A∗−

N B+
N ) cos(λ+

N + λ−
N )

+
ω

cN
(A+

NA∗−
N − B∗+

N B−
N − A∗+

N A∗−
N + B∗−

N B+
N) sin(λ+

N + λ−
N )

(27)

and

(28) u1(−b)u′
2(−b) + u2(−b)u′

1(−b) =
ω

cN
(A−

NB∗−
N − A∗−

N B−
N ).

Recall that our leftmost layer is made of the same material as our rightmost layer,
and hence c−N = c+

N = cN .
Substituting (27) and (28) into the general implicit dispersion relation (15), we

derive the recursive formula for the dispersion relation,
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(29)
2 cos(qa) = (A+

N B∗−
N +A−

N B∗+
N −A∗+

N B−
N−A∗−

N B+
N ) cos(λ+

N+λ−
N )

A−
N B∗−

N −A∗−
N B−

N

+ (A+
N A∗−

N −A−
N A∗+

N +B+
N B∗−

N −B−
N B∗+

N ) sin(λ+
N+λ−

N )

A−
N B∗−

N −A∗−
N B−

N

,

where the coefficients are obtained through the recursive relations involving (21)–(23),
(25)–(26), while λ−

N = ω
c−N

(bN − bN−1) and λ+
N = ω

c+
N

(dN − dN−1). In the numerical
experiments included in section 5, the recursive relation generating the coefficients
A±

N , B±
N , A∗±

N , B∗±
N of (29) is programmed in Maple [15]. The dispersion relation

graph is then obtained using the implicitplot Maple command with the wave number
q limited to the domain 0 ≤ q ≤ π/a.

4. Recursive formula of the dispersion relation using the quasi-sym-
metric limiting approach. This alternative approach involves the quasi-symmetric
cell configuration shown in Figure 9, which preserves the symmetric arrangement of
the materials around the filler/central layer, and allows for layers of the same material
to have differing lengths.

x
-b = -bM -bM-1 –b3 –b2 –b1 0         d1 d2 d3 dM-1 dM = d

M        • • • 3       2           1         2   3       • • • M

Fig. 9. Quasi-symmetric configuration of a unit cell made of M materials.

-b = -d1 0        d1 d2 d3 dM-1 dM = d

x

1             2      3       • • • M

l1 l2 l3                                        lM

-b = -bM -b1 0        d1 d2 d3 dM-1 dM = d

x

• • • 1             2     3        • • • M

0

0

Fig. 10. Obtaining the general cell configuration as a limiting case of the quasi-symmetric cell
configuration.

The quasi-symmetric limiting approach differs from the central expansion ap-
proach in the way the dispersion relation is derived for a general cell configuration
with a non-quasi-symmetric configuration. The quasi-symmetric limiting approach
views the general cell configuration as a limiting case of the quasi-symmetric config-
uration when the thickness of the left layer(s) approaches zero; see Figure 10. In the
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limiting procedure, it is essential to start with a quasi-symmetric and nonsymmetric
cell configuration. The same limiting procedure applied to a symmetric cell configu-
ration would fail to produce any results, because in a symmetric cell configuration,
as the thicknesses of the left layers approach zero, so do the thicknesses of the cor-
responding right layers. Thus, the quasi-symmetric nonsymmetric cell configuration
is essential, as it allows the layer thicknesses to the left and right of the central layer
to be arbitrary, and hence independent. This approach also highlights the fact that
the dispersion formula obtained in [11], [12] works for a general symmetric cell config-
uration but fails once the cell configuration becomes quasi-symmetric. In summary,
the quasi-symmetric configuration is a critical configuration to work with, because
from there one can recover the dispersion relation for the general cell configuration,
something that cannot be achieved from a symmetric configuration. The approach
described above is summarized in Figure 11 and discussed in more detail below.

2    1 2

M         • • • 3            2       1  2      3        • • • M 

3-Layered Symmetric Cell (Lee and Yang, 1973)

General Symmetric Cell

General Quasi-Symmetric Cell

General Cell

0
1             2      3        • • • M 

M       • • • 3      2              1         2   3        • • • M

Fig. 11. The stages of development of the quasi-symmetric limiting approach for a general cell
configuration of M-layers.

The recursive dispersion formula for the quasi-symmetric cell configuration can be
derived similarly to that described in the previous section, under the simplifications
that η−

j = η+
j = ηj , c−j+1 = c+

j+1 = cj+1, p−j = p+
j = pj , and N = M for j =

1, 2, . . . , M − 1. With these simplifications, the recursive dispersion formula (29)
becomes

(30)
2 cos(qa) = (A+

MB∗−
M +A−

M B∗+
M −A∗+

M B−
M−A∗−

M B+
M ) cos(λ+

M +λ−
M )

A−
M B∗−

M −A∗−
M B−

M

+ (A+
MA∗−

M −A−
M A∗+

M +B+
M B∗−

M −B−
M B∗+

M ) sin(λ+
M +λ−

M )

A−
M B∗−

M −A∗−
M B−

M

.
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The coefficients are obtained through the recursive relations involving (21)–(23)
and (25)–(26). Notice that λ−

M = ω
cM

(bM − bM−1), λ+
M = ω

cM
(dM − dM−1), while

λ−
j = ω

cj
(bj − bj−1), λ+

j = ω
cj

(dj − dj−1), pj = ηjcj+1
ηj+1cj+1

for j = 1, . . . , M − 1.
As for the general cell configuration, while the coefficients of (30) with (+) su-

perscript corresponding to the right-hand side layers remain intact, the coefficients of
the left-hand side layers with (−) superscript will simplify due to the fact that the
left-hand side layers vanish; see Figure 10. From (21)–(23), it follows that the coef-
ficients with (−) superscript related to the eigenfunction u1(x) along the left layers
are given by

(31)

⎧⎪⎨
⎪⎩

A−
j+1 = A−

j cos(λ−
j ) − B−

j sin(λ−
j ),

B−
j+1 = pj(B−

j cos(λ−
j ) + A−

j sin(λ−
j )),

A−
1 = 1, B−

1 = 0, j = M − 1, . . . , 1.

In the limiting case, as (bj − bj−1) approaches zero, so does λj = ω
cj

(bj − bj−1) for
j = M, . . . , 2. As a result, the recursive relation (31) becomes

(32)

{
A−

M = A−
M−1 = · · · = A−

j = · · · = A−
2 ,

B−
M = pM−1B

−
M−1 = · · · = pM−1pM−2 · pjB

−
j = · · · = pM−1pM−2 · · · p2B

−
2 .

Furthermore, considering that pj = ηjcj+1
ηj+1cj

, λ+
1 = λ−

1 = λ1 (central layer), A−
1 = 1,

and B−
1 = 0, the relations (32) become

(33)

⎧⎨
⎩

A−
M = A−

M−1 = · · · = A−
j = · · · = A−

2 = cos(λ1),

B−
M =

ηM−1cM

ηMcM−1
B−

M−1 = · · · =
ηjcM

ηMcj
B−

j = · · · =
η2cM

ηMc2
B−

2 =
η1cM

ηMc1
sin(λ1).

As a result, the coefficients A−
M , B−

M , and similarly A∗−
M and B∗−

M , simplify to

A−
M = cos(λ1) and B−

M =
η1cM

ηMc1
sin(λ1),(34)

A∗−
M = − sin(λ1) and B∗−

M =
η1cM

ηMc1
cos(λ1).(35)

The parameters to be used in numerical experiments (see Figure 10 and Figure 14)
are

d0 = 0, d1 = l1/2, dj = l1/2 +
j∑

h=2

lh, b0 = 0, bj = l1/2, j = 1, 2, . . . , M,

that is,

λ+
1 = λ−

1 = λ1 =
ωl1
2c1

, λ+
j = λj =

ωlj
cj

, λ−
j = 0, j = 1, 2, . . . , M.

Finally, by substituting (34) and (35) in the recursive dispersion relation (30) for
the quasi-symmetric configuration, we obtain the recursive dispersion relation (36)
for the general configuration of the unit cell made of M layers/materials.

2 cos(qa) = c1ηM

cMη1
[(A+

M
η1cM

ηM c1
cosλ1 + cosλ1B

∗+
M − A∗+

M
η1cM

ηM c1
sin λ1 + sin λ1B

+
M ) cos(λM )

+ (−A+
M sin λ1 − cosλ1A

∗+
M + B+

M
η1cM

ηM c1
cosλ1 − B∗+

M
η1cM

ηM c1
sin λ1) sin(λM )].

(36)



684 A. P. VELO, G. A. GAZONAS, E. BRUDER, AND N. RODRIGUEZ

Here the coefficients with a (+) superscript are generated using the recursive relations
(21)–(23) and (25)–(26). In summary, we established in (36) a recursive dispersion
relation for the general configuration of the unit cell made of M layers/materials.
This formula was obtained by considering the quasi-symmetric cell configuration as an
essential intermediate step. For cell configurations that are already quasi-symmetric
or symmetric, the recursive dispersion relation expressed by (30) is more suitable, as
it involves fewer recursive steps.

5. Numerical results: Comparison of the central expansion approach
with the method by Shen and Cao given in [18].

5.1. Three-material cell (M = 3). We consider a cell composed of three
distinct materials: concrete, nickel alloy, and steel. The lengths of the layers are
0.2 m, 0.25 m, and 0.3 m, respectively. The general cell diagram in Figure 6 illustrates
the unit cell used in [18] for M = 3. In the central expansion approach, a shifting
and renumbering of the layers in the original cell takes place. The resulting cell is
illustrated by the renumbered cell diagram given in Figure 6 with N = �M

2 � + 1 =
� 3

2�+1 = 3, hence the need for a fake interface. As a result, the cell to be used with the
central expansion approach has five layers and the materials for each layer are steel,
nickel, concrete, concrete, and steel. Notice the introduction of a fake interface on the
original layer of concrete. The material parameters (elastic modulus and density) are
given in the appendix.

The two graphs of the dispersion relation obtained using the central expansion
approach given in (29), and Shen and Cao’s formulas in [18], overlap in Figure 12,
demonstrating the consistency between the two methods. The recursive relation gen-
erating the coefficients A±

N , B±
N , A∗±

N , B∗±
N of (29) is programmed in Maple [15]. The

dispersion relation graph is then obtained using the implicitplot Maple command.
Determining more accurately the values of the circular frequency ω for a given value
of q, including the band ends with qa = 0 or qa = π, is a difficult root-finding prob-
lem. As discussed in [11], [12], due to (4), it is only necessary to consider the wave
number q limited to the domain 0 ≤ q ≤ π/a. As seen in Figure 12, the dispersion
relation graph displays a banded frequency spectrum using the reduced zone scheme
for the wave number q, with the circular frequency ω in the ordinate. The banded
frequency spectrum is composed of pass or propagating bands and stop bands. Over
the interval 0 ≤ q ≤ π/a, bands of permissible frequencies appear, separated by
forbidden bands (creating bandgaps), at which frequencies no Floquet waves can be
propagated. This band structure of pass and nonpass bands shows the dispersive
properties of the medium. Similar comments can be made for the other dispersion
relation graphs.

5.2. Four-material cell (M = 4). Similarly, we consider a cell composed of
four distinct materials: steel, aluminum, concrete, and nickel alloy. The lengths of the
layers are 0.15 m, 0.1 m, 0.4 m, and 0.2 m, respectively. As before, the general cell
diagram in Figure 6 illustrates the unit cell used in [18], when M = 4. The cell used
for the central expansion approach is illustrated by the renumbered cell diagram given
in Figure 6 with N = �M

2 � + 1 = � 4
2� + 1 = 3. Notice that unlike the three-material

case, in this case we do not need to add a fake interface because the number of layers
after the shift is already odd. The materials for each of the five layers are nickel
alloy, steel, aluminum, concrete, and nickel alloy. We plot the dispersion relation
using both methods, as shown in Figure 13. Notice again how well the two graphs
overlap.



RECURSIVE DISPERSION RELATIONS IN ONE-DIMENSIONAL MEDIA 685

Shen and Cao (2000)
Central Expansion Approach
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Fig. 12. Dispersion graphs for a three-material cell: Central expansion approach versus Shen
and Cao [18], using the reduced zone scheme for the wave number q.

Shen and Cao (2000)
Central Expansion Approach
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Fig. 13. Dispersion graphs for a four-material cell: Central expansion approach versus Shen
and Cao [18], using the reduced zone scheme for the wave number q.

6. Numerical results: Quasi-symmetric limiting approach.

6.1. Comparison of the quasi-symmetric limiting approach with the
method by Shen and Cao in [18]. Here we consider a unit cell composed of five
layers arranged in a general configuration, shown in Figure 14. We choose aluminum
as material 1, nickel alloy as material 2, concrete as materials 3 and 5, and steel as
material 4, with the following layer thicknesses: l1 = 0.1 m, l2 = 0.05 m, l3 = 0.4 m,
l4 = 0.2 m, and l5 = 0.25 m. The material parameters (elastic modulus and density)
can be found in the appendix. The two graphs displaying the dispersion relation using
the quasi-symmetric limiting approach given in (36), and Shen and Cao’s formulas
in [18], overlap in Figure 15.
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x
-b = -d1 0         d1 d2 d3 d4 d5 = d

1             2      3            4           5

l1 l2 l3                   l4                l5

Fig. 14. General configuration of a five-layer cell.

Shen and Cao (2000)
Quasi-Symmetric Approach
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Fig. 15. Dispersion graphs for a five-layer cell: Quasi-symmetric limiting approach versus Shen
and Cao [18], using the reduced zone scheme for the wave number q.

6.2. Comparison of both of our approaches with experimental results:
A simplified one-dimensional model. The dispersion relation and sound attenu-
ation through three-dimensional structures composed of periodically arranged cubic
cells were experimentally measured in [13]. The cubic single cell consisted of a 1 cm
diameter spherical core made of lead, coated with a 2.5 mm layer of silicone rubber.
The coated spheres were periodically arranged in a 8×8×8 cubic crystal with lattice
constant of 1.55 cm, and with epoxy as the surrounding matrix material. The cross
section of the cell is displayed on the upper part of Figure 16. The one-dimensional,
three-material symmetric cell model, shown in the lower part of Figure 16, may be
viewed, as suggested by Wang et al. [23], as a simplified one-dimensional counterpart
of the three-dimensional structure studied in [13]. In our one-dimensional model,
lead is considered as material 1, silicone rubber as material 2, and epoxy as mate-
rial 3 with the following layer lengths: 1 cm (central), with 0.25 cm and 0.025 cm
on each side. The material parameters (elastic modulus and density) are included in
the appendix. Our intent here is to illustrate the fact that our dispersion relations
correctly predict bandgaps due to a so-called localized resonance phenomenon that
has been observed in three-dimensional ternary systems [13]; the localized resonance



RECURSIVE DISPERSION RELATIONS IN ONE-DIMENSIONAL MEDIA 687

x

3         2             1            2          3

3         2             1            2         3

Fig. 16. One-dimensional unit cell motivated from the three-dimensional cubic structure (cross
section) studied in [13].

can reduce the magnitude of the bandgap by two orders of magnitude relative to that
caused by Bragg scattering, and this observation has spurred renewed interest by the
acoustic bandgap community for design of acoustic attenuators. In [6], Bragg’s law
f = n ∗ v/2a, for example, predicts a scattering frequency of about 62.5 KHz using
steel scatterers embedded in an epoxy matrix with a lattice constant of 20 mm. Here,
v is the longitudinal wave speed of the matrix, and a is the distance between the
centers of the scatterers (n = 1, 2, 3, . . .).

Liu et al. [13] measured acoustic transmission T as a function of frequency (250 Hz
to 1600 Hz) by placing a receiving transducer at the center of their sonic crystals with
an external sound source. The lowest values of T correspond to wave frequencies
that are attenuated by the structure, whereas the highest values of T correspond to
wave frequencies that easily propagate throughout the structure. Their experiments
reveal that peak transmission frequencies are located at f = 600 Hz and f = 1600 Hz.
Between these two frequencies, the transmission coefficient is low. The few measure-
ments made for low frequency (f � 300 Hz) suggest that waves with low frequencies
easily propagate through the structure.

Due to the symmetric cell configuration of the one-dimensional simplified model
given in Figure 16, the central expansion approach and the quasi-symmetric limiting
approach share the same dispersion relation formula (29). The graph in Figure 17
displays the dispersion relation predicted by (29) and obtained using the implicitplot
Maple command. Here we use frequency f on the ordinate instead of the circular
frequency ω. Determining more accurately the values of the frequency f for a given
value of q, including the band ends with qa = 0 or qa = π, is a difficult root-finding
problem. As seen in Figure 17, between the frequency range of 0–2000 Hz, the graph
exhibits a pass band for low frequencies under 140 Hz, and what appear to be four
additional narrow pass bands centered approximately at f = 873, f = 950, f = 1353,
and f = 1907 Hz. Closer inspection of an expanded view of the second pass band
shows that it is centered at f = 873.5 Hz (Figure 18). Expanded views of the third
and fourth bands (not shown here) located at approximately 950 Hz and 1353 Hz
are essentially flat to within numerical roundoff, hence the group velocity at these
frequencies is zero, i.e., vg = df

dq = 0.
In conclusion, our one-dimensional model appears to qualitatively predict the

acoustic response of the three-dimensional ternary structure, with the two narrow pass
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Fig. 17. Graph of the dispersion relation for one-dimensional symmetrical cell model motivated
from the three-dimensional model of [13], using the reduced zone scheme for the wave number q.

Fig. 18. Expanded view of the second pass band illustrated in Figure 17.

bands corresponding to the peaks and the two large bandgaps corresponding to the
ranges of frequencies that are highly attenuated. Our numerical simulations predict
bandgaps with a lattice constant two orders of magnitude smaller than the relevant
wavelength, suggesting a so-called localized resonance phenomenon already observed
in three-dimensional ternary systems [13]. However, the locations of the bandgaps do
not match those that are experimentally observed. This is to be expected, considering
the fact that our band structure equations are derived for infinite one-dimensional
periodic elastic media whereas the experiments in [13] were conducted on a finite
three-dimensional structure, with bandgaps only partially developed.

Appendix. The following are the elastic modulus η and density ρ of the materials
selected for the numerical experiments:

1. Concrete: η = 33 · 109 Pa and ρ = 2400 kg/m3.
2. Steel: η = 210 · 109 Pa and ρ = 7800 kg/m3.
3. Aluminum: η = 69 · 109 Pa and ρ = 2710 kg/m3.
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4. Nickel Alloy: η = 214 · 109 Pa and ρ = 8130 kg/m3.
5. Lead: η = 40.8 · 109 Pa and ρ = 11600 kg/m3.
6. Silicone rubber: η = 117500 Pa and ρ = 1300 kg/m3.
7. Epoxy: η = 4.4 · 109 Pa and ρ = 1180 kg/m3.
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