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Abstract
The matching complex M(G) of a graph G is the set of all matchings in G. A

Buchsbaum simplicial complex is a generalization of both a homology manifold and
a Cohen–Macaulay complex. We give a complete characterization of the graphs G
for which M(G) is a two-dimensional Buchsbaum complex. As an intermediate step,
we determine which graphs have matching complexes that are themselves connected
graphs.
Mathematics Subject Classifications: 05C70, 13F55, 05E45

1 Introduction

Given a graph G, a matching is a collection of edges such that no two share a common
endpoint. The matching complex M(G), which is the set of all matchings in G, forms a
simplicial complex. Matching complexes and their topology have been studied extensively;
see, e.g., [4, 10] for surveys of the field.

Recently, all homology manifolds that arise as matching complexes have been classified
[2]. Outside of dimension two, all such complexes are combinatorial (i.e., PL) balls and
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Figure 1: The matching complex of C7 is a triangulated Möbius strip. Faces of M(C7)
with the same label are identified.

spheres. In dimension two, more examples appear, including a torus and a Möbius strip.
See Figure 1 for one such example.

In this paper, we characterize all graphs G for which M(G) is a two-dimensional
Buchsbaum complex, which partially answers a question from [2, Section 6]. Buchsbaum
complexes are a generalization of both homology manifolds and Cohen–Macaulay com-
plexes. Though originally defined algebraically, the Buchsbaum condition is in fact a
topological property [7]. In dimension two, Buchsbaum complexes can be classified in
terms of certain subcomplexes being connected graphs, and this is the notion we will use.

In Section 2, we introduce relevant terminology and background. In Section 3 we
classify all graphs G for whichM(G) is a connected graph, which allows us to characterize
all one-dimensional Buchsbaum and Cohen–Macaulay matching complexes in Theorem 4.
Then we consider the local behavior of graphs with two-dimensional Buchsbaum matching
complexes. Section 4 gives an explicit description of all graphs G such that M(G) is a
two-dimensional Buchsbaum complex in Theorem 11 and then shows that this list is
exhaustive. We end with a brief discussion of similar questions in higher dimensions in
Section 5.

2 Preliminaries

Our two main objects of study are simple graphs and simplicial complexes. For all terms
not defined here, see standard references such as [11] and [8].

A (simple) graph G = (V,E) consists of a vertex set V = V (G) and an edge set
E = E(G) whose members are two-element subsets of V . If e = {a, b} ∈ E, we refer to
vertices a and b as the endpoints of the edge e; we will often use the notation e = ab.
Given a graph G, a matching is a collection of edges of G such that no two share an
endpoint. Unless stated otherwise, we will assume that all graphs mentioned in theorem
statements are simple and do not have isolated vertices (i.e., vertices that are not the
endpoints of any edges).

A graph is bipartite if the vertices can be partitioned into two sets V1 and V2 so that
every edge has one endpoint in V1 and one endpoint in V2, or, equivalently, if the graph
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contains no odd-sized cycles. We often refer to several common graphs: Kn the complete
graph on n vertices, Cn the cycle on n vertices, and Sn the star graph with n+ 1 vertices.
We often refer to a path on n+ 1 vertices as a path of length n and denote it as Pn+1.

A simplicial complex ∆ is a collection of sets with the property that if σ ∈ ∆ and
τ ⊆ σ, then τ ∈ ∆. An element σ ∈ ∆ is called a face; throughout, we will use the
convention of writing abc in place of {a, b, c}, etc. for faces of simplicial complexes. The
dimension of a face σ is dim σ := |σ| − 1, and the dimension of ∆, denoted dim ∆, is the
maximum of the dimensions of its faces. A complex is pure if all maximal faces have the
same dimension. Faces of dimension 0 and 1 are called vertices and edges respectively.

Note that simple graphs can be thought of as simplicial complexes of dimension one (or
less, if the graph has no edges). Throughout, we will often blur the distinctions between
graphs and 1-dimensional simplicial complexes and between simplicial complexes and their
geometric realizations.

Given a face σ ∈ ∆, its link, denoted link∆ σ (or simply link σ if ∆ is unambiguous),
is

link∆ σ = {τ ∈ ∆ | τ ∪ σ ∈ ∆ and τ ∩ σ = ∅}.
For example, the link of vertex 7 in Figure 1(b) is the path with edges 42, 25, 53 and the
link of edge 16 is the pair of isolated vertices 3 and 4. The link of a face captures the local
structure of ∆ near that face, and many properties of simplicial complexes—including
Buchsbaumness—can be defined in terms of links.

The matching complex M(G) is the set of all matchings in G. Since any subset of a
matching is also a matching,M(G) is a simplicial complex. Note that the vertices ofM(G)
correspond to the edges of G. For especially small graphs, the matching complex is easy to
calculate by hand. Alternatively, we define a Mathematica function “MatchingComplex”
in the appendix.

The figures in this paper occasionally include dotted edges. If a pendant edge is
dotted, then our arguments relating to that figure allow for arbitrarily many copies of
that pendant. Similarly, if a figure includes a dotted path of length 2 that only touches
the rest of the graph at the ends of the path, then the graph may include arbitrarily many
paths of length 2 attached at the same points.

Many results on matching complexes concern the topological properties of their geo-
metric realizations. Most previous results consider M(G) for a family of graphs (see, e.g.,
[4] and [10] for a survey of these results), but we will instead specify the properties of
M(G) and then determine the structure of G. Motivated by a question from [2, Section 6],
we will be primarily interested in complexes that satisfy the following definition.

Definition 1. Let ∆ be a two-dimensional simplicial complex. We say that ∆ is Buchs-
baum if for each vertex v ∈ ∆, link∆ v is a connected graph with at least one edge.

Note that if ∆ has any maximal faces of dimension 0 or 1, then ∆ cannot satisfy
Definition 1, so all maximal faces must have dimension 2, i.e., ∆ is pure. For example,
the link of every vertex in Figure 1(b) is a path on four vertices, so M(C7) is Buchsbaum.
Remark 2. In this paper we focus on Buchsbaum complexes in dimension two. In general,
a Buchsbaum complex can be defined as a pure complex where the ith reduced homology
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of link σ is trivial for all i < dim ∆− |σ| for all nonempty faces σ ∈ ∆. The Buchsbaum
condition was first defined in terms of algebraic properties of the complex’s associated
Stanley–Reisner ring. However, the combinatorial description above is equivalent for two-
dimensional complexes, and, moreover, Buchsbaumness is a topological invariant (see
[7, 5]).
Remark 3. Buchsbaumness is a generalization of the Cohen–Macaulay condition, which
additionally requires that link∆ ∅ (i.e. ∆ itself) also has vanishing ith homology for all
i < dim ∆. There is a related and even more restrictive class known as Gorenstein
complexes. A complete characterization of Gorenstein matching complexes is implicit in
[2, Theorem 3.1] (via [8, Chapter II Theorem 5.1]) and is proved independently in [6,
Theorem 2.1].

In light of these remarks, we note that if dim ∆ = 1, then ∆ is Buchsbaum if and only
if ∆ is a graph with no isolated vertices, and ∆ is Cohen–Macaulay if and only if it is
connected. In general, a complex ∆ is Buchsbaum if and only if it is pure and link∆ v
is Cohen–Macaulay for all vertices v of ∆. We will consider the one-dimensional case in
Section 3, and it will be key to developing our results for two-dimensional complexes.

We are not aware of any overt study of Buchsbaum matching complexes in the lit-
erature, but there are some results for similar properties for certain families of graphs.
For example, [3, Theorem 15] shows that M(Km,n) is Cohen–Macaulay if and only if
n > 2m− 1, and [12, Theorem 2.3] shows that this is in fact equivalent to vertex decom-
posability for this family of matching complexes.

3 One-dimensional matching complexes and link behavior

The goal of this section is to classify all Cohen–Macaulay and Buchsbaum matching
complexes in dimension one. We begin by defining the families G1, G2, and G3 and the
bowtie graph B in Figure 2. In this figure, dotted edges are optional. For families G1
and G2, we may repeatedly introduce filled vertices and connect them to any (nonzero)
number of unfilled vertices.

The following is the main result in this section.

Theorem 4. Let G be a graph and assume dimM(G) = 1.

(a) M(G) is Cohen–Macaulay if and only if either

(i) G has two components which are each either a K3 or a star graph, or
(ii) G is in one of the families G1, G2, and G3, or G is the bowtie graph B, all of

which are defined in Figure 2.

(b) M(G) is Buchsbaum if and only if G is a graph described in (a) or G = K4 or
G = C4.

We will spend the rest of this section proving Theorem 4. We first introduce a tool
that will be used throughout the remainder of the paper.
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Figure 2: The families of connected graphs whose matching complexes are themselves
connected graphs. Dotted edges are optional. For families G1 and G2, we may repeatedly
introduce filled vertices and connect them to any (nonzero) number of unfilled vertices.

Definition 5. For a simple graph G and an edge e ∈ E(G), the non-adjacent subgraph of
e, denoted Ne, is the subgraph induced by all edges of G that do not share any endpoints
with e.

Observe that Ne will never have any isolated vertices. Furthermore, the link of the
vertex e in M(G) is linkM(G) e = M(Ne). This allows us to use non-adjacent subgraphs
to translate the two-dimensional Buchsbaum condition for the matching complex M(G)
into conditions for the graph G.

Lemma 6. Given a graph G, M(G) is a two-dimensional Buchsbaum complex if and only
if M(Ne) is a connected graph with at least one edge for all e ∈ E(G).

Proof. A matching complex M(G) is two-dimensional if and only if the largest size of a
matching in G is three. This is equivalent to the largest dimension of the link of a vertex
in M(G) being one (i.e., the link is a graph with at least one edge).

Let M(G) be a two-dimensional complex. Then M(G) is Buchsbaum if and only if
linkM(G) e is a connected graph with at least one edge for each vertex e of M(G). Since
linkM(G) e = M(Ne), this completes the proof.

We will use the above result throughout as our main tool for characterizing two-
dimensional Buchsbaum matching complexes.

We will first consider graphs G for which M(G) is a connected graph, i.e., a 1-
dimensional simplicial complex. These graphs will be instrumental in Section 4, and
they answer the question for 1-dimensional Cohen–Macaulay and Buchsbaum matching
complexes. We first turn our attention to matching complexes of disconnected graphs.
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Figure 3: Graphs appearing in the proof of Lemma 8

Lemma 7. Let G be a disconnected graph. Then M(G) is a connected graph if and only
if G has two components which are each either a K3 or star graph.

Proof. By direct computation we easily see that the matching complexes of K3 t K3,
K3 t Sn, and Sn t Sm are all connected graphs.

Suppose that M(G) is a connected graph and G is disconnected. Observe that if G
had more than two components or if any component contained two non-adjacent edges,
then G would contain a 3-matching. Thus G has exactly two components and all edges
of each component are adjacent to each other, so the only possibility for each component
of G is K3 or a star graph.

We now will focus on connected graphs whose matching complexes are also connected
graphs. We start with the following lemma.

Lemma 8. Suppose G is a connected graph with at least two edges. If M(G) is also a
connected graph, then G contains a path of length four and no paths of length five or more.

Proof. If G has a path of length five or more, we get a 3-matching by taking the first,
third, and fifth edges of the path, so M(G) is not 1-dimensional.

Assume that edges e = uv and e′ = u′v′ form a matching in G. Since G is connected,
there must be a path connecting u to u′. Let P be the shortest such path (which may
contain e or e′). Since the vertices of e and e′ are distinct, P must contain at least one
edge besides e and e′, so P ∪ {e, e′} is a path containing at least three edges.

We now only need to show that G has a path of length four in particular. Suppose
G contains a path of length three, say {12, 23, 34}. Now consider the edge 23 (see Fig-
ure 3(a)). Since M(G) is a connected graph, there must be some other edge in G which
does not share endpoints with 23, otherwise 23 becomes an isolated vertex in M(G). Be-
cause G is connected, the only way to do this without having a path of length four is to
add the edge 14, i.e., to have C4 as a subgraph of our graph G. However, M(C4) is not a
connected graph (see Figures 3(b) and 3(c)), so this subgraph cannot contain all the edges
of G. Furthermore, the matching complex of any graph on four vertices that contains a
4-cycle is also disconnected. Thus we must have some edge in G which (without loss of
generality) shares no endpoints with both 12 and 23 while keeping G a connected graph,
which gives a path of length four.

We now turn our attention again to Figure 2, and note that each graph depicted in
this figure contains a path of length four.
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Figure 5: Graphs appearing in Case 4(b) in the proof of Lemma 9.

Lemma 9. Suppose G is a connected graph with at least two edges. Then M(G) is a
connected graph if and only if G ∈ G1, G2, or G3, or G is the bowtie graph B.

Proof. It is straightforward to check that the matching complex of any graph in these
families is indeed a connected graph; we omit the details of these calculations.

For the other direction of the proof, assumeM(G) is a connected graph. By Lemma 8,
G contains a path P of length four, say P = {12, 23, 34, 45}. If G is simply this path,
then G ∈ G1. If this path is not all of G, let us consider what we can add. Note that
we cannot add any edges which produce a 3-matching in the graph, so in particular we
cannot have any edges of the form 1a, 3a, or 5a where a is a new vertex, and we cannot
add any edges that do not share a vertex with this path of length four. We will break the
remainder of the proof into cases.

Case 1: Suppose G has C5 as a subgraph. We note that M(C5) is itself a connected
graph (namely, M(C5) = C5). If G contains any edge whose endpoints are not both
contained in this C5, then G contains a 3-matching. However, M(G) remains connected
and 1-dimensional if we add any number of edges between vertices in the C5. Thus G is
in the family G3.

Case 2: Suppose G has C3 as a subgraph but not C4 or C5. Without loss of generality,
this can only occur if we add edge 13 or 24 to our path of length four because otherwise we
immediately get a 3-matching. We will consider these as Cases 2(a) and 2(b), respectively.

In Case 2(a), we add the edge 13. Adding any edge to vertices 1 or 2 will either create
a 4-cycle (if no new vertices are introduced) or 3-matching (if there are new vertices) and
thus isn’t allowed. Adding any edge to vertex 5 except the edge 35 will again create a
4-cycle or 3-matching. Thus the only allowed options are to add any number of pendant
edges off vertex 4 or to instead add the edge 35. Observe that doing both of these would
create a 3-matching. The first of these options puts G in G2, the second shows that G is
the bowtie graph B.
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In Case 2(b), we add the edge 24 as depicted in Figure 4. Observe that any additional
edge with 1, 3, or 5 as an endpoint will create either 4-cycle or 3-matching and thus is not
allowed. The only possible additional edges in this case have either 2 or 4 as an endpoint.
However, any graph in this family has a disconnected matching complex—in particular,
the edge 24 is not in a matching with any other edge. Thus this case is impossible.

Case 3: Suppose G has C4 as a subgraph but not C3 or C5. Without loss of generality,
the only way this can occur without introducing a 3-matching is to add edge 14 to the P4
subgraph. Observe that any additional edge with 1 or 3 as an endpoint will either create
a disallowed cycle or 3-matching. This is the same for any edge with 5 as an endpoint
except the edge 25, which is allowed. The edge 24 would create a 3-cycle and thus is
not allowed. However, any number of pendants off 2 and 4 and any paths of length two
connecting vertices 2 and 4 are allowed. Therefore G ∈ G1.

Case 4: Suppose G has both C3 and C4 as a subgraph but not C5. There are two
ways to introduce the C3 (without loss of generality): As in Case 2, we can add the edge
13 or 24. We will call these Cases 4(a) and 4(b), respectively.

In Case 4(a), we add the edge 13. The only edges involving 1 and 2 that we can add
without introducing a 3-matching or 5-cycle are 14 and 24. We must add at least one
of these to create a 4-cycle in G. Once we do so, we may add the other edge and any
number of pendants off 4. Any edge with 5 as an endpoint will create a 3-matching or
5-cycle. Thus G ∈ G2.

In Case 4(b), we add the edge 24. As before, pendant edges off 1, 3, or 5 create
3-matchings, and adding the edge 15 creates a 5-cycle. Without loss of generality, the
only way to create a 4-cycle without introducing new vertices is to add the edge 14. The
only way to prevent 24 from being an isolated vertex in the matching complex is to add
the edge 13. Now adding pendants to 2 produces a 3 matching, thus G ∈ G2.

If instead we create a 4-cycle with a new vertex, the only possible way without creating
3-matchings or disallowed cycles is to add 2a and 4a for a new vertex a as in Figure 5.
However, as in Case 2(b), we see that 24 must be an isolated vertex in the matching
complex. Thus this case is impossible.

Case 5: Suppose G contains no cycles. In this case the only edges we can add without
getting a 3-matching are pendants off vertices 2 and 4. Thus G ∈ G1.

We immediately get the following corollary, combining the above results of this section
with the definition of a two-dimensional Buchsbaum complex.

Corollary 10. Let G be a graph. Then M(G) is a two-dimensional Buchsbaum complex
if and only if for each edge e of G, either

(a) Ne has two components which are each either a K3 or a star graph, or

(b) Ne is in one of the families G1, G2, and G3, or Ne is the bowtie graph B.

(That is, Ne is one of the graphs described in Theorem 4(a).)

We are now able to complete the proof of Theorem 4, characterizing graphs whose
matching complex is one-dimensional and either Cohen–Macaulay or Buchsbaum.
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Proof of Theorem 4. We recall that a 1-dimensional complex is Cohen–Macaulay if and
only if it is connected, and it is Buchsbaum if and only if it has no isolated vertices.

Therefore Theorem 4(a) follows immediately. For Theorem 4(b), the only graphs that
have disconnected matching complexes with no isolated vertices are K4 and C4 by [2,
Theorem 2.9].

4 Buchsbaum graph families

The goal of this section is to provide an explicit description of all graphs G for which
M(G) is two-dimensional and Buchsbaum. The following is our main result.

Theorem 11. Let G be a graph. Then M(G) is a two-dimensional Buchsbaum complex
if and only if G is one of the following graphs (which are defined below and depicted in
Figure 6):

(a) a member of one of the families BC7 , BP , or Bi for some i ∈ {1, . . . , 9},

(b) one of the two exceptional graphs E1 and E2, or

(c) one of the disconnected graphs described in Proposition 12, i.e.,

(i) G has three components, each of which is either K3 or a star graph, or
(ii) G has two components, one of which is K3 or a star graph and the other is

either the bowtie graph B or a graph in one of the families G1, G2, and G3.

The rest of this section is devoted to proving Theorem 11, and we will now provide
a brief outline of the proof. We first briefly consider when G is disconnected in Proposi-
tion 12. Next, we collect a variety of results on graphs containing cycles of certain sizes,
including bipartite graphs. We then split up our remaining casework using the notion of
a “link connected” graph, which we introduce in Definition 18 (a graph is link connected
if all non-adjacent subgraphs Ne are connected). In Section 4.1, we examine the graphs
that are link connected: We consider which cycles can appear in these graphs, and use
this analysis to deduce which families these graphs belong to. This leaves the non-link-
connected graphs, which we deal with in Section 4.2. These graphs by definition have
some non-adjacent subgraph Ne that is not connected. By Corollary 10, there are only a
few possibilities for what this Ne can be, and we examine each possibility one by one.

First, let us handle the case where G is disconnected.

Proposition 12. Suppose G is a disconnected graph. Then M(G) is two-dimensional
and Buchsbaum if and only if either

(a) G has three components, each of which is either K3 or a star graph, or

(b) G has two components, one of which is K3 or a star graph and the other is either
the bowtie graph B or a graph in one of the families G1, G2, and G3.
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Proof. First, if G is a graph satisfying (a) or (b), it is straightforward to check thatM(G)
is indeed two-dimensional and Buchsbaum.

Conversely, suppose that G is a disconnected graph andM(G) is two-dimensional and
Buchsbaum. If G has four or more connected components, then it is guaranteed to have a
4-matching andM(G) is thus not two-dimensional. If G has three components, then each
must be either K3 or a star graph because each component must have all edges adjacent
to each other; otherwise we could find a 4-matching in G.

Next, suppose that G has exactly two connected components and G = G1 t G2. At
least one component must not contain a 2-matching: Say this component is G1. Then G1
is K3 or a star graph. If we take any edge e ∈ G1, we see that Ne is precisely G2. Thus
by Lemma 9, G2 must be in G1, G2, G3 or G2 is the bowtie graph B.

We now turn our attention to Figure 6, which depicts several families of graphs Bi and
two exceptional graphs E1 and E2 which all have two-dimensional Buchsbaum matching
complexes. The families are defined as follows: Solid edges are necessary and dotted edges
are optional. Observe the filled and unfilled vertices in Figure 6: For each graph, we may
add any number of new filled vertices and attach each to a non-zero number of the unfilled
vertices. We note that the families B1 through B6 have nonempty intersection. Otherwise
these families are mutually disjoint.

We now describe two additional families that are not depicted in Figure 6. The first
is BC7 , which is defined to be the family of all graphs containing C7 as a subgraph that
have two-dimensional Buchsbaum matching complexes. We discuss this family in more
detail later in this section, in particular in Lemmas 16 and 17, Table 1, and Figure 11.

The last family is BP , which we call petal graphs. These are formed by taking three
graphs—each either a K3 or star graph with at least two edges—and then gluing these
graphs together at a single vertex. For the star graphs, the gluing vertex must be a
non-central vertex of the star. The resulting graph will have one main central vertex and
three ‘petals,’ each of which is a K3 or star graph. For an example of a petal graph, see
Figure 7.

We can straightforwardly verify that any graph in Figure 6 or the families BC7 and BP

has a two-dimensional Buchsbaum matching complex: For petal graphs and the families
in Figure 6, we observe that—regardless of whether any dotted edges are included—the
non-adjacent subgraph of any edge is a graph from Theorem 4. Thus we only need to
consider added edges in Figure 6. The non-adjacent subgraphs of these edges correspond
precisely to removing an unfilled vertex from the graph in question; again, we see that all
such graphs appear in Theorem 4.

We will spend the remainder of this section showing that any connected graph with a
two-dimensional Buchsbaum matching complex must be in one of the families in Figure 6
or the BC7 or BP families. Doing so will complete the proof of Theorem 11.

We recall that the only bipartite graphs in Lemmas 7 and 9 are either the disjoint
union of two star graphs or in graph family G1. Considering Figure 6, we make precise
the following observation.
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(a) B1 (b) B2 (c) B3

(d) B4 (e) B5 (f) B6

(g) B7 (h) B8 (i) B9

(j) Exceptional graph E1 (k) Exceptional graph E2

Figure 6: Graphs whose matching complexes are two-dimensional and Buchsbaum. As
before, solid edges are required and dotted edges are optional. For each graph, any number
of filled vertices may be introduced and each new vertex attached to some nonzero number
of unfilled vertices.

Figure 7: Example of a petal graph in BP . Each petal is either a K3 or star graph with
at least two edges.
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Figure 8: The case where Ne is a disjoint union of two stars, bipartitioned badly, in
Proposition 13.

Proposition 13. If G is a connected, bipartite graph and M(G) is a two-dimensional
Buchsbaum complex, then one side of the bipartition has exactly three vertices.

Proof. First, since M(G) is two-dimensional, there is some matching of three edges in G.
Each of these edges must have one vertex in each side of the bipartition, so each side must
contain at least three vertices.

Now, let e = ab be any edge of G. We know that the matching complex of Ne is a
connected graph and that Ne itself must be bipartite, so by Lemmas 7 and 9, Ne is either
a graph in G1 or a disjoint union of two star graphs.

Assume Ne ∈ G1. For every graph in G1, any bipartition has one side with only two
vertices, namely the two vertices labeled 2 and 4 in Figure 2. The edge e itself contributes
one more vertex to each side, so this side has exactly 3 vertices in G.

This only leaves the case where Ne is a disjoint union of two stars, i.e., Ne = Sm tSn.
Since this subgraph is disconnected, there is more than one way to bipartition it—the
centers of the stars can be on either the same side of the bipartition or opposite sides. If
the centers of the stars are on the same side (or either of i and j is 1), the same argument
as above works, since e again contributes one more vertex to this side. However, in the
bipartition of Ne which puts the centers on opposite sides (see Figure 8), each side may
be arbitrarily large: We must argue that this is not allowed in G.

Since G is connected, there must be at least one edge in G connecting e to each star.
We claim that such an edge cannot connect to the center of a star: Assume that the edge
x connects vertex a to the center of Sm. Given the constraints on G, we see that Nx

cannot contain a path of length four, so Nx must be disconnected. Thus there cannot be
an edge between b and the center of Sn. Therefore we must have an edge between a and a
non-central vertex of Sn; call this edge y. Returning to Nx, we see that there must be an
edge containing vertex b that does not connect to Sn; call this edge z. Observe that this
creates a 4-matching in G: Take the edges y and z, any edge in Sm that is not adjacent
to z, and any edge in Sn that is not adjacent to y.

Similarly, if there are only edges between e and non-central vertices of Sm and Sn then
G will also contain a 4-matching: Take two such non-adjacent edges, then for each star
we can always find another non-adjacent edge.

Thus this case is impossible, so one side of the bipartition of G must have exactly 3
vertices.
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(a) All other edges of G must be adja-
cent to e or contained in the depicted
5-cycle.
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(b) A graph that contains a 4-
matching.
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(c) The additional edges off 1 and 2
share a vertex that is distinct from the
endpoint of the additional edge off 3.
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(d) The additional edges off 1 and 3
share a vertex that is distinct from the
endpoint of the additional edge off 2.

Figure 9: Graphs appearing in the proof of Proposition 14.

There are several relevant observations about non-bipartite graphs that we can make
as well.

Proposition 14. Assume G is connected and M(G) is a two-dimensional Buchsbaum
complex. If G contains C5, then G contains C7.

Proof. Suppose first that G contains a 5-cycle and an edge e = ab that is disjoint from
this cycle, as depicted in Figure 9(a).

Now, Ne must be in G3, so all other edges of G must be either adjacent to e or have
both vertices in this 5-cycle. Since G is connected, we assume the edge x = 1a exists
without loss of generality. Considering Nx, we see that there must be an edge between b
and some vertex of C5 other than vertex 1. If either of the edges 2b or 5b exist, then G
will contain a 7-cycle. Without loss of generality, we assume that y = 3b exists. We see
that N45 ∈ G3, thus G cannot contain any additional vertices.

Observe that adding 4a, 5b, or any additional edge with vertex 2 as an endpoint will
create a 7-cycle. Considering Nx again, we see that it is impossible for this subgraph to
contain a path of length four without creating a 7-cycle in G. Therefore, whenever G has
an edge disjoint from the 5-cycle, then G contains a 7-cycle.

We now instead assume that all other edges of G share at least one vertex with this
5-cycle. Observe, for example, that the edges 23 and 45 form a matching. Since M(G) is
two-dimensional and Buchsbaum, these two edges must be part of a 3-matching with some
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additional edge whose endpoints are vertex 1 and some vertex u1 outside of the 5-cycle.
By applying the same argument for each pair of non-adjacent edges in this 5-cycle, we
conclude that each of the five vertices in this 5-cycle is an endpoint of some edge whose
other endpoint is a vertex outside the 5-cycle. Furthermore, we must be able to choose
five such edges—one for each vertex in the 5-cycle—such that not all share the same new
vertex as an endpoint (otherwise any non-adjacent subgraph would be connected but have
only four vertices). Thus G has at least two vertices outside this 5-cycle.

Consider the aforementioned edges for each of the five vertices in the 5-cycle. If we
take three vertices of the 5-cycle in a row, then at least two of these edges must have a
shared endpoint, otherwise G would contain a 4-matching as depicted in Figure 9(b).

Without loss of generality, there are two options for the additional edges off vertices
1, 2, and 3, as depicted in Figures 9(c) and 9(d).

Assume that the edges 1a, 2a, and 3b exist as in Figure 9(c). Then, considering the
vertices 2, 3, 4 in a row with the same logic as above, either 4a or 4b exists. If 4b exists,
then G contains a 7-cycle. If 4a exists, we apply the same logic to 3, 4, 5 to see that either
5a or 5b exists. If 5b exists, then G contains a 7-cycle. If 5a exists, observe that N3b ∈ G3,
which implies that G cannot have any additional vertices. Furthermore, N23 needs a path
of length four. The only way to create such a path is to have some edge between one of
the vertices in N23 and b, which creates a 7-cycle.

Assume instead that the edges 1a and 3a exist as in Figure 9(d). We perform the
same analysis as in the previous paragraph—either one of the edges 4b or 5b exists which
creates a 7-cycle, or both of the edges 4a and 5a exist. In the latter case, we again see that
we need some edge between one of the vertices in N23 and b, which creates a 7-cycle.

We know by Proposition 14 that the existence of a 5-cycle will force the existence of
a 7-cycle. We now consider non-bipartite graphs containing 6-cycles.

Lemma 15. Let G be a graph whose matching complex is a two-dimensional Buchsbaum
complex. If G has both C6 and C3 as subgraphs then it also has C7 as a subgraph.

Proof. There are a number of ways that the C3 and C6 could interact. By Proposition 14,
any time we deduce that G must have a C5 it must also contain a C7.

• If the C3 subgraph shares at most one vertex with the C6, then we have a 4-
matching—take alternating edges of the C6 together with an edge of the C3 that
does not touch the C6. Hence this case cannot appear.

• Suppose our C3 subgraph shares two vertices with the C6 and no edges. These two
vertices are either distance 2 or distance 3 apart in the C6, and in both cases our
graph contains C5 as a subgraph, so Proposition 14 gives us a C7.
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• Suppose that our C3 subgraph shares three vertices with the C6 and no edges. There
is only one way to do this, without loss of generality, and this way gives us a C5 as
a subgraph, so again Proposition 14 says that G contains C7 as a subgraph.

• If our C3 subgraph shares two vertices and one edge with the C6, we immediately
get C7 as a subgraph.

• If the C3 shares three vertices and one edge with the C6, we again get C5 as a
subgraph, so again we must also have C7.

• Finally, if the C3 shares all three vertices and two edges with the C6, we obtain a
C5 and thus also a C7.

This covers all possibilities, so G must always contain C7 as a subgraph.

Once a graph contains a C7, it must have a very constrained structure as described in
the lemma below.

Lemma 16. If G is a graph (with no isolated vertices) that contains C7 as a subgraph
and M(G) is two-dimensional, then G has exactly 7 vertices.

Proof. See Figure 10.
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Figure 10: Any graph containing C7 and any additional non-isolated vertices will always
contain a 4-matching.

# edges added
to C7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 total

# graphs up to
isomorphism

1 2 10 30 58 77 73 56 37 20 10 5 2 1 1 383

# graphs where
M(G) is 2D
Buchsbaum, up
to isomorphism

1 1 3 7 11 18 19 20 18 12 7 4 2 1 1 125

Table 1: Data on graphs containing C7.

We note that the graphs in Lemma 16 are all Hamiltonian, i.e., they each contain a
cycle that uses all vertices of the graph.

A consequence of Lemma 16 is that there are only finitely many possibilities to check to
find all graphs containing C7 whose matching complex is two-dimensional and Buchsbaum:
Simply take a C7 and add every subset of the

(
7
2

)
− 7 = 14 edges that could be added,

giving 214 = 16384 possibilities. While this would be impractical to check by hand, a
computer can search these possibilities without difficulty. We have included this code in
an appendix. Out of the 383 isomorphism classes of graphs on 7 vertices containing a
C7, 125 of them have a matching complex that is two-dimensional and Buchsbaum. See
Table 1 for more refined data.

In particular, C7 itself has a two-dimensional Buchsbaum matching complex, as does
K7. Deleting any one or two edges from K7 gives a two-dimensional Buchsbaum matching
complex, and so does one of the two ways of adding a single edge to C7 (up to isomor-
phism).

Lemma 16 also puts restrictions on what Ne can be for any edge e in these graphs:
There must be exactly five vertices in Ne, and there are only a few possibilities allowed
by Lemmas 7 and 9 with only 5 vertices.

Lemma 17. If G is a graph containing C7 whose matching complex is two-dimensional
and Buchsbaum, and e is an edge of G, then Ne must be one of the graphs in Figure 11.

4.1 Link connected graphs

We split up our remaining casework using the following definition.
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(a)
(b) (c)

(d)
(e)

Figure 11: Graphs with 5 vertices whose matching complex is a connected graph.

Definition 18. Let G be a connected graph. We call G link connected if Ne is a connected
graph for every edge e ∈ E(G).

Remark 19. The above definition is similar to the definition of a 3-vertex-connected graph.
In particular a 3-vertex-connected graph (or a “3-connected graph”) is a graph such that
the removal of any two vertices cannot disconnect the graph. The difference here is
that we call G link connected if it is a graph such that the removal of any two adjacent
vertices cannot disconnect the graph. Furthermore, 3-connected graphs should not have
any isolated vertices after removing the two specified vertices, but our definition of Ne

omits isolated vertices by construction.
In this section we will describe all link connected graphs whose matching complexes

are two-dimensional Buchsbaum complexes. We start with some tools that will assist us
with this.

Lemma 20. Suppose G is a link connected graph. If M(G) is a two-dimensional Buchs-
baum complex, then G has Ck as a subgraph for some k ∈ {4, 5, 6, 7}.

Proof. First note that for k > 8, G cannot have Ck as a subgraph, since such cycles all
contain a 4-matching.

Take any edge uv ∈ E(G) and consider Nuv. By Lemma 8 we know that we have the
following as a subgraph of G:

a b c d e

u v

Since G is a link connected graph, Nbc must be connected, so there must be a path in
G between either u or v and either d or e. If this path contains a, then it creates a k-cycle
for k > 4 without using either of u or v, so we assume this does not occur. Similarly, Ncd

must be connected, so there is a path in G from either u or v to either a or b. Similarly,
we may assume this path does not contain e.
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a b c d e

u v

Patching these paths together, we get a cycle whose length is at least 4.

We will be using Lemma 20 to break up our casework in this section.

Lemma 21. Let G be a link connected graph. If M(G) is a two-dimensional Buchsbaum
complex and G has C4 as a subgraph, then either G has Ck as a subgraph for some
k ∈ {5, 6, 7} or G ∈ B1.

Proof. By assumption, G has C4 as a subgraph. Label the vertices of this subgraph as
follows:

1

2 3

4

Because 12 and 34 are in a 2-matching together, they must be part of a 3-matching.
Therefore, we must have at least one more edge 56 which is disjoint from the 4-cycle:

1

2 3

4 5

6

Since G is link connected, N12 must be a connected graph, so without loss of generality
there must be a path between vertices 3 and 6. This path cannot have length three or
more, as that would introduce a 4-matching, so we must have one of these two cases:

Case 1:

1

2 3

4 5

67

Case 2:

1

2 3

4 5

6

First, let us consider Case 1. Since N37 must be connected, there must be a path from
1, 2, or 4 to either 5 or 6, but every way to do this produces a cycle Ck with k > 5.

This leaves us with Case 2. The edges 14 and 36 form a 2-matching together, so they
must be part of a 3-matching with some other edge of G. This other edge cannot be
disjoint from the picture above, since that would give us a 4-matching made of edges 12,
34, 56 and the new edge. So the possibilities for the new edge are:

• 25, in which case G has C6 as a subgraph;
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• 5a where a is a vertex not previously in our subgraph, which puts us into Case 1,
which we have already dealt with;

• or 2a where a is a vertex not previously in our subgraph.

1

2 3

4 5

6
a

In this case, now, 12 and 36 are in a 2-matching together, so once again they must be
part of a 3-matching. The possibilities for the third edge in this 3-matching are:

• 45, which gives us a C6;

• 4a, which results in some Ck for k ∈ {5, 6, 7} after noticing that N23 must also be
connected;

• 4b where b is a new vertex, which we will come back to momentarily;

• 5a, which gives a C5;

• 5b, which contains Case 1 and is thus already dealt with;

• or ab, which gives a 4-matching.

Now we consider the case with edge 4b.

1

2 3

4 5

6
a

b

Applying similar logic again, N34 must be a connected graph, so we can deduce that
either G has Ck with k ∈ {5, 6, 7} or has the following as a subgraph:

1

2 3

4
5

6
a

b
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This graph is in B1 (with vertices 2, 4, and 6 being the unfilled vertices and vertices
1 and 3 introduced and attached to all three of the unfilled vertices). If this is a proper
subgraph of G, then the only other edges we can add without introducing a 4-matching
or a larger cycle are pendants attached to vertices 2, 4, and 6, which keep G in B1.

As a consequence, we can split link connected graphs in the following way.

Corollary 22. Suppose G is link connected and M(G) is a two-dimensional Buchsbaum
complex. Then either G has exactly 7 vertices and has C7 as a subgraph, or G is bipartite.

Proof. First, G cannot contain any cycles on 8 or more vertices without including a 4-
matching.

Lemma 20 tells us that G must contain Ck, with 4 6 k 6 7. If G includes C7, we are
done immediately by Lemma 16; and if G includes a C5, then Proposition 14 gives us a
C7 and we are done.

This only leaves the case where G contains C4 or C6 but not C5 or C7. If G contains
C4 but not C5 or C7, then Lemma 21 implies that either G is in B1 and thus bipartite,
or G contains C6. And if G contains C6 but not C5 or C7, then Lemma 15 implies that
G cannot contain C3 either, so G has no odd cycles and is thus bipartite. This covers all
cases.

We now consider link connected graphs that contain a 6-cycle, which will complete
our discussion of link connected graphs.

Proposition 23. Suppose G is a link connected graph. If M(G) is a two-dimensional
Buchsbaum complex and G has C6 as a subgraph, then G ∈ B1, B2, B3, B4, B5, or BC7.

Proof. Note that if G also contains C3 or C5, then G ∈ BC7 by Corollary 22. Thus we
will limit our consideration to bipartite graphs, which implies that Ne ∈ G1 for all edges e
of G. Furthermore, G must contain some edges that have a vertex outside of the 6-cycle
(since each Ne must have at least 5 vertices), and G cannot have an edge that is disjoint
from this 6-cycle (since this would create a 4-matching). Therefore we assume G contains
the subgraph in Figure 12. Observe that the filled and unfilled vertices form a bipartition
for the graph, so by Proposition 13, there cannot be any more unfilled vertices. (Note that
we do not assume that the filled and unfilled vertices follow the convention in Figure 6;
however, these vertices will turn out to follow this convention.)

a
1

23

4

5 6

xy

Figure 12: A subgraph appearing in the proof of Proposition 23.
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Considering Nx, we see that G must contain an additional edge e with vertex 3 as an
endpoint. Similarly, considering Ny, we see that G must contain an additional edge e′

with vertex 5 as an endpoint.
Case 1: The other endpoints of e and e′ are not part of the C6.
First we note that if the edges 1a, e, and e′ are all pendants, then G ∈ B1.
Observe that if e = 3a and e′ = 5a, then G ∈ B3. Assume instead e = 3a and e′ = 5b

where b is a vertex not shown in Figure 12. (Observe that this case is equivalent to if
e = 3b and e′ = 5a or if e = 3b and e′ = 5b.) If neither of the edges 1b and 3b exist, then
G ∈ B4.

If both edges 1b and 3b exist, then again G ∈ B3. Assume without loss of generality
that the edge 3b exists but 1b does not. We claim that the family that G is in depends
on whether any additional edges between the vertices of the C6 in question exist. If no
such edges exist or only the edge 36 exists, then G ∈ B2. If either or both of the other
possible edges (i.e., 14 and 25) exist, then G ∈ B3.

Case 2: At least one of e and e′ has both vertices in this C6.
Assume without loss of generality that e = 36 and consider N36, which we recall must

be a member of G1. Thus G must contain the edge 14 or one of the edges 25 and 5a.
Assume G does not contain either of the edges 25 or 5a. Thus G must contain 14 and

5b where b is a vertex not shown in Figure 12. Therefore G ∈ B5.
If instead G contains 5a, then G ∈ B3. Finally, we consider the case where G contains

25 but not 5a. Considering Nx, we see that G must either contain the edge 3a (in which
case G ∈ B3) or either 3b or 5b where where b is a vertex not shown in Figure 12. In
either of these latter cases, G ∈ B5.

4.2 Non-link connected graphs

We now consider connected graphs which are not link connected. By definition, any such
graph must have at least one edge e for which the non-adjacent subgraph Ne is not a
connected graph. By Lemma 7, every such connected graph G with a two-dimensional
Buchsbaum matching complex must contain an edge e such thatNe is a graph in Figure 13.
Note for example that under our convention for pendants, each component of the graph
in Figure 13(f) represents any star graph with at least two edges. Though P2 (the path on
two vertices) is also a star graph, it does not have a single center vertex and thus behaves
somewhat differently from other star graphs, so we consider it separately.

The following lemma shows that any two edges with disconnected non-adjacent sub-
graphs must share a vertex.

Lemma 24. Let G be a connected graph such that M(G) is two-dimensional. If there
exist edges e, e′ ∈ E such that both Ne and Ne′ are disconnected, then e and e′ must share
a vertex.

Proof. Assume that Ne is disconnected with components G1 and G2. All edges of G that
are not in one of these components must share a vertex with edge e. Without loss of
generality, let e′ be an edge in G1.
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(a) (b) (c)

(d) (e) (f)

Figure 13: The possibilities for Ne disconnected.

e

(a) A subgraph of G in Proposition 25.

e

x y

(b) A subgraph of G in Proposition 25.

Figure 14: Graphs appearing in Proposition 25.

Since G is connected, there must be an edge connecting e and G2. Thus e and G2
form a connected subgraph of G, so the only way for Ne′ to be disconnected is for it to
contain some edge x ∈ G1 that is disjoint from e′. But this shows that {e, e′, x, y} is a
4-matching for any edge y ∈ G2, which contradicts that M(G) is two-dimensional.

We now consider each of the cases from Figure 13 in turn. As a reminder, G will
always be a connected graph in the remainder of this section, and all additional edges of
G must be adjacent to the edge e.

Proposition 25. Assume G is connected but not link connected and M(G) is a two-
dimensional Buchsbaum matching complex. If G contains an edge e such that Ne =
K3 tK3 (i.e., Ne is the graph in Figure 13(a)), then G ∈ B7.

Proof. Since G is connected and all additional edges must touch e, each K3 must be
connected to e with an edge. If the two copies of K3 are connected to e via different
endpoints of e, as in Figure 14(a), then G will contain a 4-matching. Since all remaining
edges of G must share a vertex with e, we therefore must have the graph depicted in
Figure 14(b), and the other endpoint of e cannot connect to either K3. Considering Nx

and Ny, we see that each must be a member of G2. This completely determines G, so we
see that G ∈ B7.

Proposition 26. Assume G is connected but not link connected and M(G) is a two-
dimensional Buchsbaum matching complex. If G contains an edge e such that Ne = P2tP2
(i.e., Ne is the graph in Figure 13(b)), then G ∈ BP .
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x
e

y

(a) A forbidden subgraph of
G.

a

b

z

e

(b) A subgraph of G.

Figure 15: Graphs appearing in the proof of Proposition 26

Proof. Assume that the two copies of P2 are attached to e via different endpoints of e.
Call these two new edges x and y as in Figure 15(a). Since all additional edges of G are
adjacent to e, there is no 3-matching containing x and y, thus M(G) is not Buchsbaum.
Thus, only one endpoint of e can be connected to the edges in Ne.

This gives the graph depicted in Figure 15(b). Since Nz must contain a path of length
four, we must add an edge off vertex b. Pendants off vertex a would form a 4-matching
and are thus not allowed. We may add any number of pendants off b, or, instead, we can
add a single edge between a and the pendant edge connected to b to form a K3. Similarly,
we may connect up a to either edge in Ne. Thus G ∈ BP .

Proposition 27. Assume G is connected but not link connected and M(G) is a two-
dimensional Buchsbaum matching complex. If G contains an edge e such that Ne = K3tP2
(i.e., Ne is the graph in Figure 13(c)), then G ∈ B7,B8,BC7 , or G is one of the two
exceptional graphs E1 and E2.

Proof. Let x be the isolated edge of Ne. By Lemma 24, Nx is connected and thus either
Nx = B or Nx ∈ G2 or G3. If Nx ∈ G3, then G ∈ BC7 by Proposition 14.

If Nx = B, then the graph in Figure 16(a) is a subgraph of G and all other edges of
G are adjacent to both e and x. By Lemma 24, Ny must be connected and thus have a
path of length four. But this is impossible, so this case cannot happen.

If insteadNx ∈ G2, then the graph in Figure 16(b) is a subgraph ofG and all other edges
of G are adjacent to both e and x or are of the form of the dotted edges in Figure 16(b).
Again, Ny must be connected and have a path of length four, which forces the edge
connecting vertex b and an endpoint of x to exist. Calling this edge z and considering
Nz, at least one of the edges labeled p and q in Figure 16(c) must appear.

Assume the edge labeled p exists. If the edge between b and the other endpoint of x
exists, then G ∈ B7. In not, the only possibility is to have G ∈ B8.

If the edge labeled p does not exist, then q must exist. Considering the other edges
of the K3 in Nz in turn, we see that the K4 containing vertex a and this K3 must be
completed because each edge of this K3 needs a path of length four in its non-adjacent
subgraph. Furthermore, the other two edges between e and x can either both exist or
neither exist. Thus G is either E1 or E2, the exceptional graphs in Figure 6.
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y

e x

(a) The case when Nx = B in Proposi-
tion 27. We further consider Ny, which
leads to a contradiction.

a

b

y

e x

(b) The case when Nx ∈ G2 in Propo-
sition 27. Considering Ny, we see that
there must be an edge connecting b
and an endpoint of x.

a

b

e

z

x

q

p

(c) The case when Nx ∈ G2 in Propo-
sition 27. Considering Nz, least one of
the red edges p and q must exist.

Figure 16: Graphs appearing in the proof of Proposition 27.

Proposition 28. Assume G is connected but not link connected and M(G) is a two-
dimensional Buchsbaum matching complex. If G contains an edge e such that Ne = K3tSn

with n > 2 (i.e., Ne is the graph in Figure 13(d)), then G ∈ B8.

Proof. Let x be an edge of the star graph in Ne and consider Nx. Observe that Nx ∈ G3
is impossible by Proposition 14 and Lemma 16. Since Nx contains a K3, either Nx = B
or Nx ∈ G2.

Assume Nx = B and we will show that this is impossible. We know that G contains
the graph in Figure 17(a). Observe that an edge connecting e to a non-central vertex of
the star containing x produces a 4-matching and thus is forbidden. Instead if there is an
edge connecting e and the central vertex of the star, we consider Ny, where y is the edge
labeled in Figure 17(a). Observe that Ny is connected but cannot have a path of length
four, so this situation is impossible.

Instead assume Nx ∈ G2. We claim that G ∈ B8. By assumption, G contains the
graph Figure 17(b) as a subgraph, and we claim that any additional edge of G is of the
form of a dotted edge in this figure. Observe that we cannot have an edge that connects
b to a non-central vertex of the star containing x since this would give a 4-matching in G.
Let y be the edge of K3 labeled in Figure 17(b). Considering Ny, we see that there cannot
be an edge that connects a to the central vertex of the star, since this would render Ny

connected without a path of length four.
If G has an edge connecting a to a non-central vertex of the star containing x, then

G ∈ B8. If G does not have such an edge, then G must have an edge connecting b to the
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(a) The case when Nx = B in Propo-
sition 28.

a

b

y

e x

(b) The case when Nx ∈ G2 in Propo-
sition 28.

Figure 17: Graphs appearing in the proof of Proposition 28

center of this star. Call this new edge z. Considering Nz, we see that there must be a
pendant off vertex a, so again we can conclude that G ∈ B8.

Proposition 29. Assume G is connected but not link connected and M(G) is a two-
dimensional Buchsbaum matching complex. If G contains an edge e such that Ne = P2tSn

with n > 2 (i.e., Ne is the graph in Figure 13(e)), then G ∈ B2,B6,B8,B9,BC7 , or BP .

Proof. Let x be the isolated edge in Ne, let c be the center of the Sn in Ne, and consider
Nx. Since all edges of Nx besides e and the edges in the Sn are adjacent to e, Nx = B is
impossible, and if Nx ∈ G3, then G ∈ BC7 by Proposition 14.

First assume that Nx ∈ G2. In this case, G contains the graph in Figure 18(a) as a
subgraph, and e is one of the edges of the solid K3 in this figure. All additional edges of
G are of the form of one of the dotted edges or are between e and x.

If e is the vertical edge in the K3 in Figure 18(a), we let y be the edge labeled in this
figure and consider Ny. By Lemma 24, Ny is connected and thus must have a path of
length four. However, this is impossible given the restrictions on G; thus we conclude
that e is one of the other edges of the solid triangle in this figure. We must add either
or both edges between vertex a and edge x to ensure that G is connected, and we may
also add pendants off the center of the star Sn; no other edges are allowed. In either case,
G ∈ BP with one or two petals being K3.

The last case to consider is when Nx ∈ G1. We will consider two cases: In the first e
connects to the star in Ne via a non-central vertex (Figure 18(b)); in the second no such
connections are allowed (Figure 18(c)). In each case, all remaining edges in Nx are of the
form of a dotted edge in the respective figure. All other edges of G must be adjacent to
both e and x.

Case 1: We have the case in Figure 18(b); i.e., the star containing c connects to edge
e via at least one non-central vertex.

Consider Ny where y is the edge indicated in this figure. Note that Ny must be
connected and thus have a path of length four. Thus G must have an edge connecting
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edge x and the vertex a (call this edge z) and also at least one of the red edges in
Figure 18(d).

If Ny ∈ G1, then the only possible addition to G—apart from the edges in Fig-
ure 18(d)—is the edge which connects vertex b to the endpoint of x that is not an endpoint
of z. Assume this edge exists and call it w. In this case G cannot contain the edge ac,
since Nac would be connected without a path of length four. If the red edge connecting
b and a non-central vertex of the star exists then G ∈ B2, and if this edge does not exist
then G ∈ B6. If instead G does not contain the edge w, then G ∈ B6. (To see this,
consider Nz in Figure 18(d) to see we must have an additional edge off b or c.)

If instead Ny ∈ G2, then G must contain the edge that creates a triangle with edges
x and z. Thus G contains the graph in Figure 18(e) and all other edges of G are of the
form of the dotted or red edges in this figure. Assume the edge between a and c exists.
Considering the non-adjacent subgraph for this edge, we see that no additional edges
between e and x can exist. Considering Nz, we see that either b or c must have a pendant
and thus G ∈ B9.

Assume instead that the edge between a and c does not exist. If the other two edges
between e and x both exist, then either G is the exceptional graph E2 or G ∈ B8. If G
contains only one of the other possible edges between e and x we assume, without loss of
generality, that it is the edge adjacent to z. Considering Nz shows G must have another
edge off b or c (that doesn’t attach to a). Thus G ∈ B8.

Case 2: We have the case in Figure 18(c); i.e., the star containing c is to connected
to edge e only via the edge ac.

Consider Ny where y is the edge labeled in this figure. For the same reasons as the
previous case, there must be an edge between x and vertex a, and all other edges of G
are either between e and x or of the form of a dotted edge in this figure.

Assume Ny ∈ G1. The only way for Ny to contain a cycle in this case is to have edge w
as in Figure 18(f). However, we see that Nw cannot contain a path of length four, so this
edge cannot exist. Thus in this case G is the graph in Figure 18(c) with an additional
edge from x to vertex a. So G ∈ BP with all three petals being star graphs.

If instead Ny ∈ G2, then the edge between vertex a and the other endpoint of x must
exist. Furthermore, neither of the other two edges connecting e and x can exist. Thus
G ∈ BP with one petal being a K3. This completes the proof.

Proposition 30. Assume G is connected but not link connected and M(G) is a two-
dimensional Buchsbaum matching complex. If G contains an edge e such that Ne = SmtSn

with m,n > 2 (i.e., Ne is the graph in Figure 13(f)), then G ∈ B2,B5,B6, or BP .

Proof. Let c be the center vertex of Sm and d be the center vertex of Sn. Let x be any
edge in Sm and consider Nx. Since all remaining edges of Nx are adjacent to e, Nx = B
is impossible. Similarly Nx ∈ G3 is impossible by Proposition 14 and Lemma 16 since G
has at least eight vertices.

Assume thatNx ∈ G2. In this case, G contains the graph in Figure 19(a) as a subgraph,
and e is one of the edges of the solid K3 in this figure. All remaining edges of G are
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Figure 18: Graphs appearing in the proof of Proposition 29.
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tional edges of G are dotted
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Figure 19: Graphs appearing in the proof of Proposition 30.
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either of the form of the dotted edges in this figure or adjacent to both e and x. As in
Proposition 29, we see that e cannot be the vertical edge in Figure 19(a) by considering
Ny. Similarly, if e is a different edge of the triangle, then G must have an edge between
vertices a and c. Furthermore, the only edges we can add to G are more pendants off
these stars (and not the dotted edges completing the K4 in Figure 19(a)), so G ∈ BP with
two pendants being stars and the other a K3.

The only remaining possibility is to have Nx ∈ G1. Observe that e can connect to the
star with center vertex d via a non-central vertex as in Figure 19(b) (and possibly also
d) or only via the central vertex d as in Figure 19(c). All remaining edges in Nx have to
be of the form of one of the dotted edges in these figures. All other edges of G must be
adjacent to both e and x or to the vertex c.

Case 1: We have the case in Figure 19(b); i.e., the star containing d connects to edge
e via at least one non-central vertex.

Consider Ny where y is the edge indicated in this figure. Note that Ny must be con-
nected and thus have a path of length four. Observe that connecting b to c or connecting
a to a non-central vertex of the star containing c both create a contradiction for Ny. Thus
the only remaining edges in G must be of the form of the dotted edges in Figure 19(d).

There must be some edge connecting e and the star containing x. Assume the edge
ac does not exist. Without loss of generality, this implies that the edge connecting b to
x exists. If, for each star, there is at least one more edge connecting e to the star, then
G ∈ B2. If not, then G ∈ B6.

Assume instead that the edge ac does exist. Considering Nac, this forces the existence
of an additional edge containing b that is not adjacent to edge y. These are indicated in
red in Figure 19(e). If there are no edges besides ac connecting e and the star containing c,
then G ∈ B6. If instead there exists an additional edge connecting b to the star containing
c, we consider a few options. If the edge ad exists, then G ∈ B5. If ad does not exist but
the edge between b and y exists, then G ∈ B2. If neither ad nor the edge between b and
y exist, then G ∈ B6.

Case 2: We have the case in Figure 19(c); i.e., the star containing d is to connected
to edge e only via the edge ad.

Let y be the edge indicated in this Figure 19(c). Considering Ny, we see that adding
either the edge from b to c or the edge from a to a non-central vertex of the star containing
c would create a contradiction.

Thus all additional edges in G must be of the form of the dotted edges in Figure 19(f).
There must be some edge connecting e and the star containing x. If the edge between c
and the end of the pendant off vertex b in Figure 19(f) exists, then an additional edge off
b must exist, which shows that G ∈ B6. Similarly, if a different edge exists between b and
a non-central vertex of this star, then G ∈ B6. If instead the only edge connecting e and
the star containing x is the edge between vertices a and c, then G ∈ BP (with all three
petals being stars). This completes the proof.

This completes our characterization of graphs with two-dimensional Buchsbaum
matching complexes.
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5 Concluding remarks

Outside of dimension two, all homology manifolds that arise as matching complexes are
combinatorial spheres and balls [2]. However, in the Buchsbaum case, we do not expect
higher dimensions to be as well behaved. Though a complete characterization is perhaps
currently infeasible in general, it may be possible when restricted to certain families of
graphs. For example, we can give an answer for complete bipartite graphs: If G = Km,n is
a complete bipartite graph withm 6 n, thenM(G) is Buchsbaum if and only if n > 2m−2.
This follows from [3, Theorem 15], which says that M(Km,n) is Cohen–Macaulay if and
only if n > 2m− 1.

We further note that [12, Theorem 2.3] shows thatM(Km,n) is vertex decomposable if
and only if n > 2m− 1, so vertex decomposability, shellability, and Cohen–Macaulayness
are equivalent for matching complexes of complete bipartite graphs. For other families
of graphs, however, none of these properties hold in general. For example, if n > 8,
then M(Kn) is not Cohen–Macaulay (and thus not shellable or vertex decomposable).
However, work has been done on the shellability and vertex decomposability of skeleta of
these matching complexes [1, 9]. Thus it may be interesting to study Buchsbaumness of
skeleta of matching complexes.

Lastly, we note that some other classes of simplicial complexes can be easily described
in the context of matching complexes. Recall that a complex is a matroid indepedence
complex (or, simply, a matroid) if every induced subcomplex is pure. Using this definition,
it is straightforward to see that M(G) is a matroid if and only if G does not contain a
path of length three. Thus M(G) is a matroid if and only if G is the disjoint union of
star graphs and copies of K3.
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Appendix

The following is Mathematica code for computing matching complexes and checking
whether a matching complex is two-dimensional and Buchsbaum. The code also checks
whether a Hamiltonian graph on 7 vertices has a Buchsbaum matching complex, which
was used to generate the data in Table 1.
MatchingComplex [ g_ ] := RelationGraph [ DisjointQ , EdgeList@g ]
(∗ Computes the 1− s k e l e t o n o f the matching complex . ( The f u l l

match ing complex i s the c l i q u e complex o f t h i s graph . ) ∗)

Ve r t e xL i nk [ g_ , v_ ] := VertexDelete [ NeighborhoodGraph [ g , v ] , v ]
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(∗ Computes the l i n k o f v by f i n d i n g i t s ne ighborhood and
d e l e t i n g v ∗)

TwoDBuchsbaumQ [ g_ ] := ( Length@F i r s t@FindClique@g == 3) &&
AllTrue [ VertexList@g , (ConnectedGraphQ@# && EdgeCount@#>0)&
@ Ve r t e xL i n k [ g ,#]&]

(∗ Checks f o r 2D Buchsbaumness by check i ng tha t the l a r g e s t
c l i q u e has s i z e 3 and a l l v e r t e x l i n k s a r e connected g raphs
w i th at l e a s t one edge ∗)

c7andedges = Table [ EdgeAdd [ CycleGraph@7,#]& /@
Subsets [ EdgeList@GraphComplement@CycleGraph@7 , { i } ] //
DeleteDuplicates [# , IsomorphicGraphQ ]& , { i , 0 , 1 4 } ] ;

(∗ Takes a l l s u b s e t s o f edges i n the complement o f C7 , grouped
by s i z e o f the subse t , and adds them to C7 , then throws out
a l l but one graph from each i somorph i sm c l a s s ∗)

c7buchsbaums = Select [# , TwoDBuchsbaumQ@∗MatchingComplex ]& /@
c7andedges ;

(∗ P i ck s out the g raphs whose matching complex i s 2D and
Buchsbaum ∗)
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