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Atmospheric condensed-phase reactions of glyoxal with methylamine

David O. De Haan,1,2 Margaret A. Tolbert,2 and Jose L. Jimenez2

Received 23 January 2009; revised 20 March 2009; accepted 11 May 2009; published 13 June 2009.

[1] Glyoxal reacts withmethylamine in drying cloud droplet/
aerosol surrogates to form high molecular mass oligomers
along with smaller amounts of 1,3-dimethylimidazole and
light-absorbing compounds. The patterns observed by high-
resolution time-of-flight aerosol mass spectrometry indicate
that oligomers form from repeated imine units. The reactions
are 1st order in each reactant: rate-limiting imine formation
is followed by rapid dimer and oligomer formation. While
excess methylamine evaporates from the droplet, half the
glyoxal does not, due to self-oligomerization reactions that
occur in the absence of methylamine. Glyoxal irreversibly
traps volatile amine compounds in the aerosol phase,
converting them into oligomers. This is the first reported
mechanism for the formation of stable secondary organic
aerosol (SOA) material from methylamine, a substance
with only one carbon, and could produce as much as
11 Tg SOA yr�1 globally if glyoxal reacts exclusively by
this pathway. Citation: De Haan, D. O., M. A. Tolbert, and

J. L. Jimenez (2009), Atmospheric condensed-phase reactions of

glyoxal with methylamine, Geophys. Res. Lett., 36, L11819,

doi:10.1029/2009GL037441.

1. Introduction

[2] Laboratory simulations [Kalberer et al., 2004; Nozière
et al., 2007; Tolocka et al., 2004] and field measurements
[Baltensperger et al., 2005; Denkenberger et al., 2007;
Kalberer et al., 2006] have suggested that complex, light-
absorbing oligomers with masses near several hundred amu
are a major water-soluble component of atmospheric
secondary organic aerosol (SOA). Aldehydes are likely
involved in their formation, since they form oligomers in
aqueous-phase reactions accelerated by drying [Kalberer et
al., 2004] or catalyzed by amino acids or ammonium salts
[Nozière et al., 2007]. Denkenberger et al. [2007] found
that all oligomer-containing particles sampled in Riverside,
CA exhibited strong aerosol time-of-flight mass spectrometer
signals of both amines and oxalic acid, an aqueous-phase
oxidation product of glyoxal [Carlton et al., 2007].
[3] Single-component chamber photooxidation experi-

ments performed in the absence of glyoxal have demon-
strated that methylamine does not generate significant
aerosol mass [Malloy et al., 2008;Murphy et al., 2007; Silva
et al., 2008]. However, as shown in this work, methylamine

forms oligomerized SOA during simulated cloud droplet/
aerosol drying in the presence of glyoxal. Both compounds
are commonly present in clouds and aerosol [Igawa et al.,
1989; Zhang and Anastasio, 2003]. It has recently been
shown that reactions between glyoxal and amino acids in
evaporating droplets and aerosol surrogates form stable
imidazoles along with light-absorbing compounds [De Haan
et al., 2009]. C–N bond formation was also observed in
aqueous-phase reactions of glyoxal with ammonium sul-
fate aerosol, and was attributed to imidazole formation
[Galloway et al., 2008]. In this work we characterize reac-
tions between glyoxal and methylamine using electrospray
ionization mass spectrometry (ESI-MS), nuclear magnetic
resonance (NMR) spectroscopy, and both quadrupole and
high-resolution time-of-flight aerosol MS (Q-AMS and
HR-ToF-AMS). We analyze the concentration dependence
of the reaction and the partitioning of excess reactants when
aqueous droplets are exposed to decreasing relative humidity.

2. Experimental Methods

[4] Glyoxal trimer dihydrate and a 40% w/w aqueous
solution of methylamine (Sigma-Aldrich) were used without
further purification. Since aqueous phase reactions of glyoxal
are greatly accelerated by drying [Loeffler et al., 2006], all
experiments included a drying step performed at room
temperature, either in air for bulk experiments or in humid-
ified nitrogen for simulated cloud droplet evaporation experi-
ments. Product formation in bulk-phase reactions was studied
by mixing 150 mL aliquots of 1 M glyoxal and methylamine
solutions in glass vials and allowing the solutions to dry in air
at 295 K. The resulting deep brown residue was characterized
by re-dissolving in D2O or water at 1 mg/mL and analyzing
by 1H-NMR (400 MHz), ESI-MS (Thermo-Finnigan LCQ
Advantage, ESI nozzle voltage = +4.3 kV, injection rate
2.5 mL/min, medical N2 sheath gas flow = 25, capillary
temperature = 250�C), and HR-ToF-AMS (Aerodyne
Research, vaporization temp. of 600 �C, electron ionization
(EI) at 70 eV) [DeCarlo et al., 2006].
[5] Concentration dependence was studied in drying

aerosol experiments by ultrasonically nebulizing aqueous
solutions containing <0.1 wt% total organics, which is less
than an order of magnitude above measured levels in
anthropogenically-influenced clouds [Decesari et al.,
2005]. Droplets with wet diameters near 4 mm were neutral-
ized (NRD model P-2021-1000) and sent via N2 flow and
copper tubing into a 300 L Teflon chamber (New Star
Environmental, LLC) containing nitrogen humidified to
>70% relative humidity (RH). RH was monitored at the
chamber outlet (Vaisala HMT337). After 10–20 minutes of
fill time, the particles in the chamber were sampled via black
conductive (TSI) or copper tubing by scanning mobility
particle sizing (SMPS, TSI Inc. models 3080, 3081, 3010),
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Q-AMS (Aerodyne Research, conditions as above)
[Canagaratna et al., 2007], and/or HR-ToF-AMS (Wmode).

3. Results and Discussion

[6] The ESI-MS spectrum of the products of the bulk-
phase reaction of glyoxal and methylamine are shown in
Figure 1. Nucleophilic attack by the amine group on the

glyoxal aldehyde group produces an imine in a drying
aqueous droplet (Figure 2). A protonated, hydrated imine
could be responsible for the peak detected at m/z 90 by ESI-
MS (Figure 1). However, peaks assigned to 2nd generation
imine reaction products are larger: a peak at m/z 97 is
consistent with 1,3-dimethylimidazole, and a prominent
mz = 18 series (Dm/z 125, 143, and 161) is likely due to
protonated imine dimers incorporating varying amounts of

Figure 1. Positive mode ESI-MS spectrum of the products of bulk phase reaction of glyoxal with methylamine,
re-dissolving in water at 1 mg/mL. a and b are labels for the oligomer series shown in Figure 2.

Figure 2. Potential structures of imine dimers and oligomers formed in the reactions of glyoxal with methylamine during
cloud droplet evaporation. Aldehyde groups, while completely hydrated in aqueous-phase NMR measurements (and thus
not observed in Figure S1 of the auxiliary material), are only partially hydrated in ESI-MS and unhydrated in AMS
measurements due to solvent evaporation in the inlet regions. a and b are the oligomer series marked in Figures 1 and 3.
Left box: fragment ions observed by AMS. Right box: oligomer molecules observed mainly by ESI-MS.

L11819 DE HAAN ET AL.: GLYOXAL AND METHYLAMINE REACTIONS L11819

2 of 5



water. A series of oligomeric groups withDm/z of 12, 13 and
14, peaking at m/z 253, and extending well beyond m/z 800
as a continuous elevated baseline, are also detected by
ESI-MS. None of these groups or patterns were observed in
the absence of methylamine [Hastings et al., 2005], and the
magnitude of the baseline signal was ten times lower than in
Figure 1. These patterns, as will be shown below, are
consistent with the formation of imine oligomers.
[7] In order to probe these reactions under more atmo-

spherically relevant conditions, aqueous aerosol drying was
simulated in chamber experiments. In 10 min at 90% RH,
droplets containing 8.8 mM glyoxal and 17 mM methyl-
amine lost >99.99% of their volume due to water loss, and
the resulting aerosol particles contained significant amounts
of oligomerized products, as seen by AMS (Figure 3).
Decomposition during AMS aerosol evaporation adds to
strong EI fragmentation at 70 eV (their combined effect we
will refer to as ‘‘fragmentation’’ below), while unfragmented
parent molecules (as H+ adducts) are detected by ESI-MS.
While ESI-MS spectra are typically simpler than AMS
spectra, in this case the complex oligomeric pattern detected
with ESI-MS (Figure 1), resolves in the HR-ToF-AMS into
superimposed Dm/z 13 and Dm/z 71 patterns (Figure 3),
indicating that many oligomers decompose into the same
‘‘building-block’’ fragments. These patterns, analyzed at
high resolution for exact mass information, suggest that
oligomers are rapidly formed by repeated additions of the
imine (CH3N=CHCHO,m/z 71). Potential product structures
consistent with exact mass and NMR data (Figure S1 of
the auxiliary material) are shown in Figure 2.1 A peak
consistent with the protonated imine is observed by AMS
at m/z 72. The ESI-MS peaks assigned to imine dimers are
again visible by AMS at m/z 125 and 143, but peaks
assigned to hydrated species (m/z 90, 161) are negligible due
to water loss during fragmentation. The prominent peak at
m/z 97 is consistent with 1,3-dimethylimidazole. See
Figures S2–S4 for control runs.
[8] The proposed imine dimer structures with aldehyde

groups have enol tautomers that can undergo aldol conden-
sation with glyoxal or imine molecules, as shown in Figure 2.
The m/z 214, 285, 356 ‘‘a’’ series could result from the

repeated addition of imine molecules to am/z 143 dimer. The
addition of glyoxal by aldol condensation, followed by imine
addition, could produce the m/z 201, 272, 343 ‘‘b’’ series.
Most of these peaks are visible in the ESI mass spectrum
(Figure 1). However, except for m/z 214, these peaks are
not prominent in the AMS spectrum (Figure 3) likely because
of H2CO loss (Dm/z -30) during fragmentation. Loss of
H2CO can produce the corresponding fragment series m/z
171, 242, 313, 384, 455, 546, 597 (‘‘b’’) and 184, 255, 326,
297, 468, 539, 610 (‘‘a’’) shown in the left box in Figure 2.
These fragment peaks dominate the AMS spectrum, but with
the exception of m/z 171, are not prominently observed by
ESI-MS, as expected. A third Dm/z 71 series is observed at
229, 300, 371, 442, and 513, likely due to hydrolysis and loss
of a methylamine unit (Dm/z �13) from the series starting
at m/z 171. The base of all of these fragment ion series
appears to be the dimer fragment observed in Figure 3 at
m/z 113 (C5H9N2O), formed either by H2CO loss from a
m/z 143 imine dimer or by oligomer fragmentation.

3.1. Concentration Dependence

[9] The concentration dependence of glyoxal + methyl-
amine reactions was studied by independently varying the
concentrations of each reactant in aqueous droplets, evap-
orating the droplets at RH > 70%, and analyzing the
resulting aerosol by Q-AMS. In the first set of experiments,
glyoxal concentrations were varied from 0 to 8.8 mM while
[methylamine] = 16.8 mM. Fifteen different product ions
were analyzed (Figure S5) and were found to vary as a
function of [glyoxal]1.0 ± 0.2, indicating that the reaction is
1st order with respect to glyoxal, consistent with the reaction
of glyoxal with ammonium salts under similar conditions
(pH < 6 and [NH4

+] < 2 M) [Nozière et al., 2009]. In a
second experiment, [glyoxal] = 8.8 mM while methyl-
amine concentrations were varied between 0.35 and 9.3 mM.
Four product ions (that were not produced by glyoxal in
the absence of methylamine) varied proportionally to
[methylamine]0.8 ± 0.3. The total reaction order is thus
1.8 ± 0.4 (2nd order overall), the same as that determined
for glyoxal + amino acid reactions by a similar analysis and
by 1H-NMR kinetics [De Haan et al., 2009]. The formation
of oligomers and imidazole derivatives (that contain two or
more molecules of each reactant) in reactions that are 1st

Figure 3. HR-ToF-AMS stick spectrum of aerosol produced from solution containing 8.8 mM glyoxal and 16.8 mM
methylamine, dried at 90%RH in a chamber for 10 min. a and b are labels for the oligomer series shown in Figure 2. The
peak height at m/z 597 is 11 times higher than the background measured when sampling non-oligomer-forming systems.

1Auxiliary materials are available in the HTML. doi:10.1029/
2009GL037441.
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order in each reactant suggests that imine formation is the
rate-limiting step. The imine appears to be an intermediate in
the production of oligomers, which is likely the reason it is
not detected in longer, bulk-phase experiments.

3.2. Reactant Volatilization

[10] The glyoxal + methylamine experiments just
described also provide information about volatilization of
the reactants. In experiments where droplet glyoxal concen-
trations are very low relative to methylamine, if the excess
methylamine evaporates, very little material will be left
behind as aerosol when water evaporates from the droplet.
This is exactly what is observed in three SMPS experiments
(Figure S6). When the concentration of glyoxal is low,
minimal aerosol is produced; furthermore, Q-AMS imidazole
product peaks at m/z 97, 42, and 15 disappear. When glyoxal
is added in, it reacts with an equivalent amount of methyl-
amine and aerosol volumes are seen to increase sharply,
demonstrating that glyoxal traps methylamine in the aerosol
phase via the reactions described above.
[11] The behavior of glyoxal is fundamentally different.

If all excess glyoxal partitioned to the gas phase upon
droplet evaporation, very little aerosol material would be
observed when methylamine concentrations are low. Instead,
aerosol volumes remain high when methylamine concentra-
tions are low. When methylamine is added in, glyoxal peaks
decline and imidazole and imine peaks reappear in the
aerosol mass spectrum (Figures S2, S7, and 3), but aerosol
volumes increase by only 48% (Figure S6, circles). This
nearly matches the theoretical volume increase of 47% if
the same fraction of glyoxal remained in the aerosol phase
but reacted with methylamine instead of itself (assuming
that both reactions produce oligomers of the same density).
Comparing these SMPS size distributions with that of NaCl
aerosol generated under the same conditions indicates that
about half of the glyoxal volatilizes from drying droplets
initially containing 8.8 mM glyoxal in 1 h at RH > 70%,
whether or not methylamine is present. This is consistent with
recent observations of glyoxal volatilization from aqueous-
phase aerosol at RH > 55% [Galloway et al., 2008].
[12] HR-ToF-AMS elemental analysis [Aiken et al., 2007,

2008] of aerosol produced from an aqueous solution con-
taining 8.8 mM glyoxal and 16.8 mM methylamine reveals
that the aerosol had a significantly lower N/C atomic ratio
(0.32) than the starting mixture (0.49, calculated). Since
molecules containing equal numbers of glyoxal and methyl-
amine subunits (imine oligomers) are expected to have N/C
ratios nearly identical (0.33) to those measured, the observed
ratio is consistent with the formation of such oligomer
products and the evaporation of excess methylamine. Thus,
these experiments demonstrate that glyoxal can trap volatile
amine compounds in the aerosol phase by oligomer-forming
reactions that occur during cloud droplet evaporation.
Aqueous-phase reactions between glyoxal and amines
provide an explanation for the consistent co-detection of
oligomers, amines and oxalic acid in Riverside, CA
[Denkenberger et al., 2007]. While a fraction of aqueous-
phase glyoxal may be oxidized to oxalic acid during the
�15 min. lifetime of a cloud or fog droplet, the remaining
glyoxal may oligomerize with amines upon droplet evap-
oration, producing aerosol containing oligomers, amines,
and oxalic acid.

[13] While we have not measured reaction rates in this
study, we have previously showed that glyoxal + amino acid
reactions are fast enough to occur during and after cloud
droplet evaporation under atmospheric conditions [De Haan
et al., 2009]. The atmospheric significance of glyoxal +
methylamine reactions will therefore likely depend on the
relative concentrations of glyoxal and amines in clouds and
aerosol. Alkyl amines are produced by marine organisms,
animal husbandry, biomass and fossil fuel burning, meat
cooking, and industrial activities [Murphy et al., 2007].
High (0.01–6 mg/m3) levels of amine compounds have been
measured in aerosol and fog in California’s Central Valley
[Sorooshian et al., 2008; Zhang and Anastasio, 2001, 2003]
and in winter aerosol in Logan, UT [Silva et al., 2008].
Methylamine concentrations averaged 9 mM in Central
Valley fog [Zhang and Anastasio, 2003]. Glyoxal concen-
trations in rural fog are typically lower [Matsumoto et al.,
2005; Munger et al., 1995]. Functional group analysis of
filtered particles collected at a range of sites indicates that
amine groups typically account for 2–13% of organic
matter and appear to correlate with fossil fuel burning
[Liu et al., 2009; Russell et al., 2009]. This is roughly
consistent with aerosol atomic N/C ratios detected by
HR-ToF-AMS of �0.02 in urban areas [Aiken et al., 2008].
It is likely that the highest coincident levels of glyoxal and
alkyl amines will be in polluted regions, in biomass burning
plumes, and over biologically active agricultural and marine
regions.
[14] If we assume that amine concentrations typically

exceed those of glyoxal in clouds and aerosol, then we can
use recent estimates of SOA formation from glyoxal [Fu et
al., 2008] to calculate an upper limit for the contribution of
amines to global SOA budgets via reactions with glyoxal,
using methylamine as a proxy since it is a dominant amine
in cloudwater. 2.6 Tg C yr�1 SOA is formed globally by
glyoxal if its uptake is irreversible [Fu et al., 2008], which
equals 7.6 Tg SOA yr�1 if glyoxal reacts with itself. Using
our observation that the addition of equimolar quantities of
methylamine to glyoxal solutions increased aerosol volumes
by 48%, and assuming no change in aerosol density, a
total of 11.2 Tg SOA yr�1 would be formed when glyoxal
reacts with amines instead of itself, of which the increase of
3.6 Tg SOA yr�1 can be attributed to amines. This corre-
sponds to an additional SOA source from methylamine of
1.4 Tg C yr�1 and 1.6 Tg N yr�1, or about 3% of total
WSOC [Fu et al., 2009], a level that is consistent with
aerosol amine measurements [Liu et al., 2009; Russell et
al., 2009].

[15] Acknowledgment. This material is based upon work supported
by the National Science Foundation under grant ATM-0749145.
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