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ABSTRACT 

 DNA is the genetic blueprint responsible for the traits of living organisms. The "genetic 

alphabet" consists of four molecules called nucleobases, represented by the letters A, T, G, and C 

strung together in a "strand." A DNA duplex consists of two "strands" held together such that A 

is across from T and G across from C, referred to A-T and G-C "base pairs". Recently, the 

genetic alphabet or code has been expanded by synthetic biologists in an effort to unveil new 

insights to the machinery of DNA replication, and potentially develop new medicines to cure 

diseases like HIV.  The new unnatural base pair 5SICS-NaM is the first to be stably replicated by 

a semi-synthetic E. Coli organism. This project investigates the structure of a novel DNA duplex 

containing two 5SICS-NaM pairs arranged side-by-side using a technique called NMR 

spectroscopy. Thus far, NMR chemical shift assignments for this duplex have been largely 

completed which provide some information as to the structural configuration of the base pairs. 

Preliminary results indicate that one of the two adjacent 5SICS-NaM pairs is situated within the 

duplex, whereas the other may have the 5SICS base pushed out of the duplex with its paired 

NaM base stacked quite normally. Further analysis of the data should allow us to propose a more 

precise structure of the DNA duplex as well as provide insight into the versatility of DNA 

replication machinery to recognize altered DNA structures. 

 

INTRODUCTION 

For as long as there has been life on Earth, there has been DNA. Deoxyribonucleic 

acid (DNA) is the genetic blueprint responsible for the observable and sub-visual traits of 

living systems. Without it, we would not be able to survive or reproduce. However, as 

imperative as this DNA genetic system is to life, it was only extensively investigated in 1953 

by scientists James Watson and Francis Crick (1). 

Watson and Crick were responsible for determining the antiparallel double helical 

stranded structure of DNA (Fig. 1), its connected strands held by merely four nucleotides 

arranged in specific pairs shown in Figure 2 (1). These strands are held together by a number of 

intermolecular forces including hydrogen bonds and base-stacking interactions, the latter of 

which plays a more prominent role in stability than originally thought. The order of these four 

nucleotides or bases: guanine, adenine, thymine and cytosine--or G, A, T, and C--hold the 

coding key for life (1). Additionally, Watson and Crick found that there are complemI’m 

entarity rules, as purines (G and A) associate with pyrimidines (T and C) to achieve the 

characteristic “template-directed replication...with the high fidelity essential to life” (5). 
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The structure provided in Figure 1 is an image of dsDNA in B-form, which is the form of DNA 

that Watson and Crick discovered, as well as the most common form of DNA (11).  

However, there are two additional forms of nucleic acids duplexes, called A-form and Z-

form (Fig. 3). The nucleic acid duplexes that have A-form structure are RNA-DNA and RNA-

RNA duplexes and while this form maintains the right-handed structure of B-DNA, A-form has 

different helical parameters, which can be seen in Figure 3 (11). A third structure of nucleic acid 

duplexes is called Z-form, which has a left handed helix and is thought to be necessary for 

certain cellular functions (11). 

Figure 1. Double helical structure of 

DNA. Structure formation formed from 

nucleotide base pairs on opposite strands 

that are attached to a deoxyribose sugar-

phosphate backbone. The four natural 

nucleotides of DNA are adenine (A), 

thymine (T), guanine (G) and cytosine 

(C). Sequences of these natural bases 

store the coding information required for 

creating and maintaining an organism.1 

Figure 2. Natural Watson-Crick single 

DNA strand and base pairing. (A) A 

depiction of a single DNA strand (5’ to 3’) 

with all four natural bases: adenine, 

guanine, cytosine and thymine; sugar, is 

ribose; (B) Watson and Crick base pairing 

between purines (G & A) and pyrimidines 

(C & T). 
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Figure 3. The three canonical double helical DNA structures.1 

  

Recently, efforts in several labs around the world have made progress creating synthetic, 

analogous DNA building blocks to unveil potential secrets that nature may be hiding. This 

emerging field called "synthetic biology" (1), coined by Dr. Steve Benner, attempts to design and 

explore the intricacies of a synthetic DNA system with the hope of discovering new biological 

properties, as well as to make progress in biomedical efforts (2). Synthetic biology is rooted in 

the principle that “synthesis drives discovery in ways that analysis cannot” (3). In other words, it 

provides an alternative research method centered on creating synthetic systems to mimic natural 

biological properties (3). 

One method of utilizing synthetic biology is in the introduction of unnatural base pairs 

(UBPs) into the existing natural system (6). The question then arises: "If we understand the 

biochemical machinery required to replicate DNA, can we expand the “genetic alphabet” and 

is there any value in doing so?" (4). Some scientists argue that there must be some concrete 

reason to why the four nucleotides have persisted for “eons of biological evolution” (4). 

However, if the genetic alphabet can be expanded, new types of amino acids could be 

                                                 
1
Lasbury, M. DNA is As Easy As A, B, Z http://biologicalexceptions.blogspot.com/2013/10/dna-is-as-easy-as-b-

z.html (accessed May 5, 2017). 
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produced in order to design new proteins and hence possibly even new medicines, catalysts, 

biological tools (4), and maybe even new organisms. 

At the end of the 1980s, Benner created the first synthetic DNA molecule, but modified 

its structure to be more flexible, which allowed for the incorporation of an additional 12 

synthetic nucleosides beyond the four natural nucleotides (1). The results were profound. 

Benner’s research created a new “diagnostic tool for doctors” (1), which “helps manage the 

care of ~ 400,000 patients infected with HIV and hepatitis viruses each year” (3).  Benner and 

his team hope to use this discovery to eventually create a “personalized medicine” system that 

is “tailored to each person’s individual genetic code” (1). He believes that this would not only 

increase proper diagnoses, but also increase the efficacy of prescribed treatment (1). 

In 2006, a team at Stanford created a new functioning DNA system by incorporating 

additional benzene moieties into the four natural nucleotides, see Figure 4 (2). The modified 

nucleotides created by Kool et. al, deemed xDNA and yDNA, are fluorescent and can be useful 

in biological detections plus the additional benefit that an xDNA strand can complementarily 

bind to a natural strand and therefore provides increased specificity for certain coding regions 

(2). 

 

 

 

Although the addition of these benzene rings elongated the nucleotides, a fully synthetic 

duplex had all of the characteristics of a Watson and Crick helix and was just as selective in 

binding as natural DNA systems (2). They conclude that this finding yields a new perspective: 

DNA replication might not have to follow the Watson and Crick model (2). As Ivan Amato puts 

it, “just why DNA and RNA use only four bases remains one of the grand mysteries of biology” 

(4). Voegel and others hypothesized that the reason why nature has selected its four 

nucleotides--A, G, C, and T—is because of certain “keto/enol tautomeric equilibrium constants 

for the natural bases [that] are not a function of medium polarity,” however more research 

needs to be conducted to prove this point (5). 

Figure 4. xDNA base pairing 

with natural canonical 

Watson Crick bases. A single 

xDNA stand is composed of 

both xDNA and natural bases 

for a total of 8 bases with four 

different pairing arrangements. 

In contrast, natural DNA has 

four bases with only two 

different pairing arrangements 

(2). 
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In 2009, Dr. Floyd Romesberg and his team designed and synthesized the novel 

d5SICS-dNaM unnatural base pair and determined the efficiency and fidelity of its replication 

compared to that of an A-T base pair (10). This UBP does not possess the traditional “edge-to-

edge” Watson-Crick base pairing present in natural nucleotides, as shown in Figure 5 (7).  

 

 

 

Both 5SICS and NaM molecules are considered “hydrophobic" nucleobases meaning 

that they associate tightly together to exclude water. In 2014, Romesberg showed that the 

d5SICS-dNaM pair can be accurately and efficiently replicated through the endogenous 

machinery of Escherichia coli if unnatural triphosphates are provided (6). Moreover, the 

d5SICS-dNaM pair was not removed by natural DNA repair mechanisms and therefore this 

bacteria represents the first semi-synthetic organism “to propagate stably an expanded genetic 

alphabet” (6). Because these molecules have a different pairing interaction with a structure 

“very different from that of a normal base pair,” it is puzzling that d5SICS-dNaM are able to 

replicate through endogenous mechanisms in vivo, and through polymerase chain reaction 

(PCR) methods in vitro, with “fidelities that approach those of fully natural DNA” (7). These 

studies have potential to topple what is currently known about the polymerase mechanism. 

To be more specific, Betz et al. (2012) found that d5SICS-dNaM pairing in a DNA 

duplex has an intercalated structure. The intercalative bonding between the d5SICS-dNaM pair 

is shown in Figure 6 with permission from Dr. Tammy Dwyer (7).  

 

Figure 5. The structure of a 

d5SICS-dNaM pairing. A 

comparison of d5SICS-dNaM  

and pyrimidine-purine 

association via dC-dG. As can 

be seen, the d5SICS-dNaM has 

no hydrogen bonding between 

nucleosides (7). 

 



 

 

Preising 6 

 
Figure 6. KlenTaq polymerase induces the dNaM-d5SICS unnatural base pair to adopt a 

natural, Watson-Crick-like structure. a) Natural dG-dC base pair. (b) Unnatural dNaM-

d5SICS pair. The chemical structures of both base pairs are at the top of the panel. A comparison 

of the structure formed in duplex DNA versus the structure of the duplex inside the KlenTaq 

polymerase active site is at the bottom of the panel. Only nucleobases are shown with sugar and 

phosphates omitted for clarity.  

 

 What is especially interesting about Figure 6 is that the structure of the d5SICS-dNaM 

pair is dynamic depending on its environment outside of a polymerase active site or inside the 

active site (Fig. 6b). When the UBP is outside of the KlenTaq polymerase active site it retains 

its intercalated duplex structure; however, while the d5SICS-dNaM pair is present in the active 

site of KlenTaq polymerase, the duplex mimics the edge-to-edge packing with an 

“internucleotide distance that is roughly the same as that of natural base pair” (Fig. 6b). Betz et 

al. believe that this finding indicates “complementary hydrogen bond formation is not required 

for the efficient and selective replication of DNA” (7). Because d5SICS-dNaM pairing can be 

replicated by polymerases other than KlenTaq, the structural findings of Betz and others “may 

be generalized to other polymerases” (7). Moreover, the findings suggest that the plasticity of 

the packing of hydrophobic unnatural base pairs may make them an intriguing line of study for 

an expanded genetic alphabet (7).  
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Pfaff et al. have published evidence suggesting that the structural differences of a 

single non-hydrogen bonding base pair in an otherwise natural DNA duplex are restored 

“beyond one base pair on either side” (8). This result highlights the idea that in a DNA duplex 

with non-natural base pairs, the structural distortions are confined to a local region 

immediately adjacent to the "damage" site (8). If one were to couple the findings of Pfaff and 

Betz, one may infer that disruptions in a DNA duplex get restored during the replication 

process by polymerase enzymes, which further supports the innate flexibility of natural 

polymerases to replicate unnatural perturbations in dsDNA. 

The work discussed herein presents a snapshot of ongoing research involving two-

dimensional (2D) NMR spectral analysis of a synthetic DNA duplex incorporated with two 

adjacent d5SICS-dNaM UBPs provided by Dr. Floyd Romesberg. The DNA sequence used for 

the NMR structural study is shown in Figure 7. A presentation of the d5SICS and dNaM 

aromatic proton identities is shown in Figure 8. 

 

 

 

Figure 7. DNA oligonucleotide sequence incorporated with adjacent d5SICS-dNaM base 

pairs. The sequence is self-complementary2 from 5’ to 3’.  

 

         

 

 

 

The goal of this work is to investigate the structure of a DNA duplex with two adjacent 

d5SICS-d5NaM pairs to determine precisely how the unnatural nucleobases are situated within 

the duplex, given the unusual dynamic orientation of the single pair (7). Additionally, future 

                                                 
2 Hare states that a self-complementary duplex “halves the number of signals compared to an equivalent length of 

DNA without symmetry” (9). In other words, that “separate lines [on NOESY] are not seen for the two halves of the 

helix” (9).  

d5SICS dNaM 

Figure 8. The labeling 

scheme for aromatic protons 

of d5SICS and dNaM 

unnatural bases 
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studies may be conducted to verify whether the structural disruptions of two adjacent unnatural 

base pairs can be detected and/or restored by natural polymerases, with the eventual end goal 

of investigating whether an entirely unnatural duplex may be efficiently and accurately 

replicated by endogenous DNA mechanisms. 

This research involves the use of two-dimensional nuclear magnetic resonance (2D-

NMR) technology to provide structural data of the synthetic DNA duplex of interest obtained 

from Dr. Romesberg. The process of NMR begins with simple resonance assignments for basic 

topology, followed by sequential resonance assignments and finally structure determination (12). 

Proton NMR is particularly useful for this research because nucleic acids have low proton 

densities and therefore can be quickly recognized and identified to uncover alignment of base 

pairs; however, finalized DNA duplex structures require assignments for sugar-phosphate 

backbones as well (12). An overview of structure determination by NMR is summarized in 

Figure 9. 

 

 
 

The original protocol for assigning non-exchangeable proton resonances for a natural 

DNA duplex was published by Dennis Hare and others in 1983 (9). The publication presents 

assignment guidelines for carbon-bound protons of double-helical B-form nucleic acids. The 

hypothesis was that the natural ends of the duplex in Figure 7 would conserve B-form structure 

and hence Hare’s methodology could be used. The natural nucleotide protons of interest in 

duplexed DNA are highlighted with their general 1D NMR chemical shifts (ppm) in Figure 10.  

 

Figure 9. Schematic overview of 

NMR technique. The inner cycle 

involving assignment, structure 

calculation and selection, as well 

as restraint violations and error 

analysis. The inner cycle is 

usually conducted several times 

before quality checks can be done 

to validate a biomolecule’s 

structure (outer cycle). 



 

 

Preising 9 

 
Figure 10. Chemical shift assignments for small B-form DNA sequences. The aromatic 

proton of interest for purines and pyrimidines is H8 and H6, respectively. The protons of interest 

for the deoxyribose sugar moieties are H1’, H2’ and H2’’. In particular, the methyl of thymine 

and the H5 of cytosine are important for COSY spectra. The colored protons above the 1D NMR 

spectra connect identity to regions on 2D NMR spectra for both COSY and NOESY.  

 

The two NMR techniques used in this research were 2D COrrelated SpectrscopY 

(COSY) and Nuclear Overhauser Enhanced SpectroscopY (NOESY) spectra in D2O (9). 2D 

NMR functions based on aligning chemical shifts from 1D spectra and dispersing the signals 

across two axes (or dimensions). Connections of two chemical shifts between axes are deemed 

“cross peaks” and represent resonance interactions between distinct protons.  

Hare states that COSY spectra identify “through-bond connectivities”. COSY spectra can 

be used to identify scalar-coupled protons—usually 3 bonds apart, with an exception for 4-bond 

coupling from methyl groups on aromatic rings). For duplexed DNA, COSY spectra can group 

aromatic scalar-coupled protons on a single base, or protons on a one sugar, “without giving any 

information about the position of these residues in the sequence” (9). The only aromatic scalar-

coupled protons are C H5 to C H6 which form strong cross peaks; comparatively, weaker cross 

peaks between T CH3 to T H6 can also be seen on a COSY spectra (9). Additionally, in the sugar 

moieties the H1’ is scalar-coupled to its own H2’ and H2’’. The corresponding cross peaks for 

these sugar proton interactions can be seen horizontally upfield from the scalar-couplings of the 

pyrimidines.  

In contrast, NOESY spectra provide a reliable way to connect sequential nucleotides via 

“through-space” or through-distance connectivities within 5 Å (9). It should be noted that there 
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are many more non-scalar-coupled protons and therefore a NOESY spectra has much more cross 

peaks. A NOESY spectrum contributes to determination of DNA structure in three key ways (see 

Figure 10 for a visual of protons). First, the aromatic proton on one base is within 5 Å of the H1’ 

of its own sugar and the aromatic proton of an adjacent base in the 5’ to 3’ direction. Second, the 

aromatic proton on one base is within 5 Å of the H2’ and H2’’ of its own sugar, where the 

H2’/H2’’ can be further connected to the aromatic proton of the adjacent base. Third, the T CH3 

can be connected to the H1’ of adjacent base sugar in 3’ to 5’ direction. Besides these three key 

characteristics, NOESY spectra can also verify the C H5 to C H6 and T CH3 to T H6 

assignments from a COSY spectra, as well as the H1’ to H2’/H2’’ of the sugar moieties. It is 

important to note that the H1’ to H2’’ cross peaks on NOESY spectra are stronger than the H2’ 

because “any given H2’’ is nearer to its H1’ than is H2’” (9).  

 

METHODS  

 Sample Preparation 

 The two self-complementary oligomers d(GTACC(SICS)(NaM)GGTAC) were 

synthesized in the laboratory of Dr. Floyd Romesberg (TSRI) and purified. Oligomer 

concentration was determined by UV absorbance at 240 nm and the extinction coefficient for 

5SICS and NaM were estimated to be the same as guanine. The oligomers were mixed in a 1:1 

stoichiometry, the resulting duplex was annealed at 85C, and dialyzed against 2 L of 1.0 M 

NaCl, 2 L of 0.50 M NaCl, and 2 L of deionized water in a dialysis apparatus using a 1 kDa 

molecular weight cutoff.  

The NMR sample used for structural analysis was prepared by dissolving the DNA 

duplex in 600 L of 10 mM sodium phosphate buffer (pH 7.0) containing 100 mM NaCl and 0,1 

mM EDTA, then lyophilizing and re-dissolving in 99.99% D2O (Cambridge Isotope 

Laboratories) to a 600 L final volume. The resulting concentration of the DNA strand in the 

sample was 1 mM. 

 

NMR Spectroscopy 

 A Varian Inova 500 MHz spectrometer was used to obtain proton NMR spectra in D2O. 

NOESY and DQF-COSY spectra were acquired using the TPPI method of phase cycling, and 

data were collected at 20, 25C, 30°C, and 35C to resolve cross-peak overlap in the spectra. 

NOESY spectra with a mixing time of 300 ms were collected for signal assignments, with a 

spectral width of 5913 Hz and 2048 complex points in t2 and 512 in t1 increments (zero filled to 

2048 on processing. 64 scans were averaged for each t1 value using a recycle delay of 2 s. 

Residual HOD resonance was suppressed by application of presaturation during the recycle delay 

and the mixing time. DQF-COSY spectra were collected with 2048 complex points in t2 and 512 

t1 increments (zero filled to 2048) points on processing with a spectral width of 5913 Hz; 40-80 

scans were collected for each t1 value using a recycle delay of 2 s with presaturation of the HOD 

resonance. All spectra were transferred to a PC laptop and processed by Felix.  
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RESULTS 

  The current results of this 2D NMR investigation of represent the first step of NMR 

study: the assignment of cross peaks to particular protons on the nucleobases and sugar moieties 

of the synthetic DNA duplex shown in Figure 7 following the approach and key spectral regions 

outlined by Hare et. al in 1983.  

 First and foremost it should be noted that the numbering assignments for nucleotide 

residues in the duplex are presented in both 2D COSY results, although numbered position 

assignments for the residues identified from 2D COSY were only confirmed later in 2D NOESY 

spectrum regions. The expanded COSY spectrum region of aromatic scalar-coupled of the H5 

and H6 protons for the cytosine residues is shown in Figure 11. The chemical shift assignments 

for these cytosine residues are summarized in Table 1.  

 

 
Figure 11. Identification of H6 and H5 protons of cytosines from 2D COSY spectra of at 

25°C. Black lines, resonances on C4 and C12; blue lines, resonances on C5 with color change for 

clarity; green line, an unidentified cross peak near C5 which may be an important connection to 

either NaM or 5SICS in the NOESY fingerprint region. Chemical shift assignments are 

summarized in Table 1. 
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In Figure 11 there are three strong distinct aromatic cross peaks denoting three cytosine 

residues. The lack of aromatic scalar-coupled cross peaks for the other three cytosines—there is 

a total of six in the duplex—was expected due to the self-complementary nature of its sequence 

(see Fig. 7 for sequence). These results hint at the idea that the natural base ends of the synthetic 

duplex maintain 2-fold symmetry because the number of cross peaks for H6 and H5 of cytosine 

residues is halved (9).  

 

Table 1. H5 and H6 chemical shift assignments for cytosine residues from 2D COSY 

spectra at 25°C.  

Residue H6 H5 

C4? 7.219 5.281 

C5? 7.387 5.546 

C12? 7.375 5.431 

  

The 2D COSY spectra results also serve to identify the thymine residues present in the 

duplex, specifically the four-bond coupling between methyl and H6 protons. The expanded 

COSY spectrum region for these interactions is shown in Figure 12. 

  

 
Figure 12. Identification of H6 and methyl protons of thymine residues from 2D COSY 

spectra of at 25°C. Chemical shift assignments are summarize in Table 2.  
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 The two weak cross peaks connecting the aromatic region to the methyl region identifies 

only two thymine residues out of the total four in the duplex, similarly to the cytosine residues, 

providing further support that the natural ends of the duplex maintain 2-fold symmetry. 

 

Table 2. Methyl and H6 chemical shift assignments for thymine residues from 2D COSY 

spectra at 25°C.  

Residue H6 H5 

T2? 7.441 1.417 

T10? 7.240 1.410 

 

 Following identification of the coupled proton interactions of cytosine and thymine 

residues, comparison of chemical shift assignments was made via 2D NOESY spectrum at 25°C. 

The aromatic region of the 2D NOESY spectrum for H6 and H5 protons of cytosine is shown in 

Figure 13. 

 
Figure 13. 2D NOESY comparison of H6 and H5 protons of cytosine residues at 25°C. 

Black arrow intersection, three cross peaks for H6 and H5 of cytosine corresponding to 2D 
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COSY results in Figure 11; orange boxes, denote possible sequential interactions between H6 

and H1’ protons between residues.  

 

 The 2D NOESY spectrum region in Figure 13 correlates the H6 and H5 protons of 

cytosine residues from the 2D COSY (Fig. 11), but more importantly this region is able to 

connect the cytosine H6 protons to either its own sugar H1’ or to the H1’ of the adjacent 

residue’s sugar (9). Because there is evidence to suggest 2-fold symmetry of the duplex (Fig. 11, 

12), for simplicity, position numberings will be conducted based on the 5’ to 3’ strand.  

 The top two boxed cross peaks can be horizontally connected at 5.885 ppm and this 

chemical shift is likely either the C4 H1’ or C5 H1’. Following this numbering logic, the bottom 

orange boxed cross peak must be the C12 residue by elimination, with a horizontal chemical shift 

of 6.068 ppm. Similarly, the cross peaks and chemical shifts found in the thymine region of the 

2D COSY spectrum (Fig. 12) were correlated to the same region on the 2D NOESY spectrum. 

This expanded 2D NOESY region is shown in Figure 14.  

 

 
Figure 14. 2D NOESY comparison of H6 and methyl protons of thymine residues at 25°C. 

Blue arrows, interactions between thymine methyl and aromatic protons; black arrows, 

interactions between the other thymine methyl and aromatic protons; red boxes, the thymine 

methyl and H6 cross peaks obtained from 2D COSY spectrum in Figure 12 with chemical shift 

assignments made in Table 2.  

 

 In contrast to the 2D COSY spectrum region of the thymine methyl and H6 proton 

interactions (Fig. 12), the 2D NOESY spectrum of the same region presents more cross peaks 

(Fig. 14). This is because a single methyl resonance of thymine creates NOESY cross peaks to its 

own H6 proton (red boxes) and to another aromatic proton of the base on the 5’ side.  In the 

duplex, both T2 and T10 residues have adjacent G1 and G9 residues on the respective 5’ sides, 

(Fig. 7). The black arrow intersection presents the interaction between a thymine methyl and 

aromatic H8 proton of a guanine residue vertically at 7.959 ppm; conversely, the blue arrow 

intersection presents another thymine methyl and aromatic H8 proton of another guanine at 

7.715 ppm.  
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 At this point, the H6 and H5 chemical shifts for cytosine residues and thymine H6 and 

methyl chemical shifts have been confirmed from Figures 11 and 12, respectively. By correlating 

the 2D COSY aromatic and methyl chemical shifts for cytosine and thymine residues with 2D 

NOESY spectrum, potential chemical shifts for cytosine H1’ (Fig. 13) and guanine H8 protons 

(Fig. 14) has been suggested.  

However, the exact numbered position of these residues requires sequential resonance 

assignments along all aromatic to H1’ protons in either the 5’ to 3’ or 3’ to 5’ direction. This is 

because the aromatic to H1’ connectivities “order the deoxyribose protons into their respective 

positions in the chain” (9). The sequential walk in the 5’ to 3’ direction from G1 to C12 has been 

determined from a 2D NOESY spectrum region and the results are presented in Figure 15 below.  

 

 
Figure 15. 2D NOESY spectra of H6/H8 to H1’ at 25°C. Nucleoside aromatic protons to 

deoxyribose H1’. Chemical shift assignments are presented in Table 3. 

 

 The aromatic proton to H1’ 2D NOESY spectrum in Figure 15 presents the sequential 

“walk” moving from G1 to G8 and G9 to C12 via cross peak alignment. There is a gap in 

assignments between the natural aromatic protons of C5 and G8 to 5SICS and NaM, 

respectively. Moreover, there is no cross peak present for the interaction between the C5 H6 and 
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its own H1’. The gap left by the unnatural 5SICS and NaM bases suggests a perturbed duplex 

structure, as the natural ends of the duplex cannot be tied into two unnatural d5SICS-dNaM base 

pairs. 

 

 After the assignment of the aromatic to H1’ protons of the natural nucleotides from 

Figure 15, further characterization of the natural nucleotide sugar moieties is presented in Figure 

16. In this region, the aromatic proton of one nucleobases can be connected to the H2’/H2’’ 

protons of its own sugar, where these H2’/H2’’ protons can then be connected to the aromatic 

proton of an adjacent nucleobase.  

 

 
Figure 16. 2D NOESY spectra of aromatic to H2’/H2’’ proton resonances at 25°C. The 

black arrows sequentially connect the cross peaks between an aromatic proton to its own sugar 

and the sugar adjacent to it, similar to the aromatic to H1’ “walk” in Figure 15. Red box and 

arrows, present unidentified cross peak interactions that may connect G8 to NaM. Chemical shift 

assignments are shown in Table 3. 
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  In Figure 16, the residues directly adjacent to the unnatural NaM and 5SICS bases—C5 

and G8—as well as the terminal C12, did not have all aromatic to H2’/H2’’ cross peaks. First, 

the C5 H1’ to H2’ and H2’’ cross peaks were both missing; second, the G8 H1’ to H2’’ cross 

peak was missing; and third, the C12 H’ to H2’’ cross peak was missing. On another note, the 

red arrow in Figure 16 denotes a possible connection between G8 H8 (7.935 ppm) to an 

unidentified peak with vertical and horizontal coordinates of 7.221 and 2.313 ppm, respectively.  

 

The deoxyribose H2’/H2’’ chemical shift assignments can be confirmed in a separate 2D 

NOESY region via H1’ to H2’/H2’’ connectivities, however these assignments have not been 

completed. It should be noted that “any given H2’’ is nearer to its H1’ than is H2’, and hence 

gives a much stronger NOESY cross peak,” which allows H2’ to be readily identified from H2’’ 

(9). The H1’ and H2’/H2’’ 2D NOESY region is shown in Figure 17, however only the H1’ 

assignments have been shown. 

 

 
Figure 17. 2D NOESY spectra of H1’ to H2’/H2’’ at 25°C. Note: the assignment of the 

deoxyribose H2’/H2’’ assignments has not been completed.  

 

 At this point, most natural nucleotide chemical shift assignments have been made, albeit 

without the confirmation of the H2’/H2’’ assignments from the H1’ to H2’/H2’’ region (Fig. 17). 

A summarized chemical shift assignment from both 2D NOESY and COSY spectra is presented 

in Table 3. 
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Table 3. Chemical shift assignments for G1 to C5 and G8 to C12 derived from 2D COSY 

and 2D NOESY spectra at 25°C.  

 Nucleobase Moiety Deoxyribose Moiety 

Residue H8 H6 H5 CH3 H1’ H2’ H2’’ 

G1 7.959   1.418 6.007 2.656 2.788 

T2  7.441  1.418 5.787 2.25 2.533 

A3 8.302    6.257 2.719 2.896 

C4  7.231 5.278  5.885 2.083 1.853 

C5  7.402 5.543  N/A N/A N/A 

G8 7.93    5.591 2.719 N/A 

G9 7.715   1.418 5.895 2.719 2.562 

T10  7.24  1.418 5.743 2.431 2.078 

A11 8.288    6.286 2.881 2.69 

C12  7.387 5.5425  6.086 2.132 N/A 

 

 After conducting chemical shift assignments for almost all natural nucleotides, the goal 

was to now try and locate the 5SICS and NaM bases. First, the methyl region of the 2D NOESY 

spectrum was analyzed to look for the methyl of d5SICS (see Fig. 8 for labeled 5SICS and NaM 

protons) and the spectra is presented in Figure 18.  

 

 

Figure 18. 2D NOESY spectra of 5SICS CH3 to its aromatic protons at 25°C. Horizontal 

line, a 5SICS CH3. Vertical arrow, a 5SICS CH3 to its aromatic protons, likely the cross peak of 

HB and HC shown in Figure 19. Chemical shift assignments are presented in Table 4.   

 

 Like thymine, 5SICS has four-bond coupling between its methyl and both Hk and HB 

protons, however the 2D COSY spectrum does not present a cross peak in that region (Fig. 12). 

The NOESY spectrum in Figure 18 shows a distinct cross peak shifted downfield vertically from 
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the thymine residues at 1.467 ppm. This cross peak is a 5SICS CH3 residue seeing its own HB/HC 

cross peak vertically at 7.489 ppm. The lack of a second 5SICS CH3 cross peak could mean that 

one of the 5SICS residues is swung out of the duplex, falling outside of the 5 Å through-bond 

connectivity required for 2D NOESY cross peaks (9). 

These observations resulted in the creation of a potential 5SICS residue aromatic “walk,” 

which is shown below in Figure 19 (a bit below the natural nucleotide aromatic to H1’ region). 

 

 
Figure 19. 2D NOESY spectra of 5SICS Walk at 25°C. Intranucleoside aromatic protons of 

the NOESY spectrum. The aromatic protons reside on the diagonal and sequential cross peak 

alignment from HA to HE denotes the ‘walk” for 5SICS. Presence of a methyl group between 

HB and HC further supports unique 5SICS identity. Green arrow, denotes an small cross peak 

adjacent to the HB/HC that may connect to NaM. Chemical shift assignments are presented in 

Table 4.   

 

 The “walk” shown in Figure 19 presents the sequential aromatic proton connectivities of 

one 5SICS residue. The individual chemical assignments for the aromatic protons on this 5SICS 

residue are summarized in Table 4 below.  
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Table 4. Potential chemical shift assignments for aromatic protons of a 5SICS residue from 

2D NOESY spectra at 25°C.  

Residue HA HB HC HD HE CH3 

5SICS 7.211 7.504 6.874 6.712 6.502 1.467 

 

After the identification of one of the 5SICS residues in the duplex—either 5SICS6 or 

5SICS18—identification of the NaM residues was explored. NaM bases have an OCH3 that can 

be connected to its aromatic HK proton based on unpublished data from a previous research team 

with Dr. Tammy Dwyer as the PI. The cross peaks for the OCH3 moieties of NaM residues is 

present near ~3.5 ppm chemical shift of the 2D NOESY spectrum. The results of OCH3 

assignments are shown in Figure 20.  

 

 
Figure 20. 2D NOESY spectra of NaM OCH3 to its aromatic protons at 25°C. The four 

potential methoxy chemical shift assignments are the following: OCH3 1 to HK1 (6.34 vs 3.56); 

OCH3 2 to HK2 (6.22 vs. 3.51); OCH3 3 to HK3 (6.52 vs. 3.65); OCH3 4 to HK4 (6.54 vs. 3.44). 

Summarized chemical shift assignments are presented in Table 5.  

 

 The 5SICS walk results presented in Figures 18 and 19, show only one potential 5SICS 

CH3. In contrast, the OCH3 NOESY spectrum has four potential OCH3 moieties, albeit that there 

are only two NaM residues: NaM7 and NaM19. The results from Figure 20 suggest that these 

two residues have two different conformations, indicating that there may be two distinct 

conformations of the overall synthetic duplex. The best potential aromatic NaM walk was made 

from the OCH3 1 and HK1 cross peak from Figure 20 with chemical shifts of 6.34 and 3.56 ppm, 

respectively. The corresponding aromatic proton walk generated from this OCH3 and HK 

assignment for this NaM residue is shown in Figure 21. 
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Figure 21. 2D NOESY spectra of NaM Walk at 25°C. OCH3 (6.34 vs 3.56). Intranucleoside 

aromatic protons of the NOESY spectrum. The aromatic protons reside on the diagonal and 

sequential cross peak alignment from HK to HF denotes the “walk” for a NaM residue. Presence 

of a methoxy group near HK and HJ supports unique NaM identity. Summarized chemical shift 

assignments are presented in Table 5. 

 

 This aromatic NaM walk (Fig. 21) completes all aromatic protons from HK to HF. 

However, these assignments have not been correlated with a 2D COSY spectra which would be 

valuable in identifying the aromatic scalar-coupled HJ/HI, HI/HH, and HH/HG (see Figure 8 for 

aromatic proton labeling). Unfortunately, full aromatic NaM walks could not be completed for 

the remaining three OCH3 and HK cross peaks shown in Figure 20. However, the aromatic NaM 

walk presented in Figure 21 was confirmed from a separate 2D NOESY spectrum generated at 

20°C. The corresponding NaM walk at 20°C is shown in Figure 22.  

 

  

 

 

 



 

 

Preising 22 

 
Figure 22. 2D NOESY spectra of NaM Walk at 20°C. OCH3 (6.308 vs. 3.521). 

Intranucleoside aromatic protons of the NOESY spectrum. The aromatic protons reside on the 

diagonal and sequential cross peak alignment from HK to HF denotes the “walk” for a NaM 

residue. Presence of a methoxy group near HK and HJ supports unique NaM identity. 

Summarized chemical shift assignments are presented in Table 5. 

 

 The 2D NOESY spectrum region for the NaM walk at 20C (Fig. 22) supports the 

previous walk created at 25°C (Fig. 21). That being said, there were four OCH3 and HK cross 

peaks at 20°C (not presented here) which similarly could not generate full NaM walks. 

 

 Before going into a summarized table of the potential NaM walks generated from 2D 

NOESY spectra at both 25°C and 20°C, there is another potential walk of interest for a NaM 

residue shown in Figure 23.  
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Figure 23. 2D NOESY spectra of NaM Walk at 25°C. OCH3  (6.52 vs 3.65). Intranucleoside 

aromatic protons of the NOESY spectrum. The aromatic protons reside on the diagonal and 

sequential cross peak alignment from HK  to HF  denotes the “walk” for NaM. Presence of a 

methoxy group near HK  and HJ  supports unique d5NaM identity. Red arrow, G8 H8 to NaM @ 

peak below diagonal (7.933 vs 8.052 ppm). 

 

 The NaM walk shown in Figure 23 is very distinct from the NaM walks shown in Figures 

21 and 22, however this walk may be a potential candidate for another NaM residue. While the 

sequential cross peaks from HK to HF have not been completed in Figure 23, the results suggest 

that another NaM walk could be shifted much farther downfield into the 8 – 9 ppm region on the 

horizontal axis. Another interesting finding is that the G8 H8 resonance has a cross peak 

interaction bellow the diagonal that has not been connected so far to any NaM walks (see red 

arrow in Fig. 23). This may be an interesting starting point for future researchers looking to 

finish this NMR structural study. Finally, the potential aromatic, CH3 and OCH3 proton 

assignments for NaM residues is summarized in Table 5.  
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Table 5. Potential chemical shift assignments for aromatic protons on NaM from 2D 

NOESY spectra at 25°C and 20°C. The numbering after residue names are used to separate the 

four different potential walks and are not related to residue position in sequence. 

Temperature Residue OCH3 HK HJ HI HH HG HF 

25°C 

NaM #1 3.56 6.34 6.482 6.712 7.338 6.893 6.721 

NaM #2 6.22 3.51 - - - - - 

NaM #3 6.52 3.65 6.849 7.461 8.302 - - 

NaM #4 6.54 3.44 - - - - - 

20°C 

NaM #1 3.521 6.308 6.458 6.678 7.288 6.867 6.7 

NaM #2 3.446 6.187 - - - - - 

NaM #3 3.59 6.521 - - - - - 

NaM #4 3.371 6.498 - - - - - 

 

 The results from Table 5 show complete potential chemical shift assignments for a 

d5NaM at both 25°C and 20°C. 

 

DISCUSSION 

 From NMR spectra, we can tell that the sequences preceding and following the 5SICS-

NaM pairs are B-form and self-complementary. This means that although there are disturbances 

in the unnatural region of the sequence, these disturbances are localized and do not affect the 

natural ends of the duplex. However, future work involves distinguishing the chemical shift 

assignments of the undetermined 5SICS and NaM residues to provide insight on the overall 

structure. Identification of the unnatural 5SICS and NaM H1’ protons would be helpful in 

determining the orientation of these bases, as these H1’ assignments could be used to connect 

into their H2’/H2’’ protons. 

A number of possible conformations of the two unnatural base pairs could be occurring 

within the duplex making this particular region unclear (as shown in Fig. 20). Moreover, if the 

H2’/H2’’ assignments for C5 and G8 deoxyribose moieties adjacent to 5SICS6 and NaM7 could 

be confirmed by further analysis, this may unveil new insights to the unnatural region of the 

duplex. On a different note, the lack of these H2’/H2’’ assignments may suggest that some of 

these unnatural residues are swung outside of the duplex. This would support the missing 5SICS 

CH3 group in Figure 18; however, the presence of four distinct NaM OCH3 resonances in Figure 

20 may suggest otherwise.  

I hope that future researchers are able to carry out this 2D NMR structural investigation 

of this duplex based on the foundation that has been laid with this paper. It may even be useful to 

separate the unnatural 5SICS and NaM base pairs by a few natural residues to see if the natural 

nucleotides between the unnatural bases possess B-form or have distorted structures. 

  

 

 



 

 

Preising 25 

REFERENCES 

1. Gramling, C. A Formula for life: For Chemistry Professor Steven Benner, Life As We Know 

it May Not Be The Only Alternative. Explore: Research [Online], 2005. 

http://www.research.ufl.edu/publications/explore/v10n1/story1.html (accessed Feb 17, 2017). 

2. Krueger, A. T.; Lu, H.; Lee, A. H. F.; Kool, E. T. Synthesis and properties of size-expanded 

DNAs: Toward designed, functional genetic systems. Accounts of Chemical Research. DOI: 

10.1021/ar068200o. Published Online: Feb 2007, 40 (2), 141–150. 

3. Sismour, A. M.; Benner, S. A. Synthetic biology. Expert Opinion on Biological Therapy. DOI: 

10.1517/14712598.5.11.1409. Published Online: Nov 2005, 5 (11), 1409 

4. Amato, I. Expanding the genetic alphabet. Science News. DOI: 10.2307/3974601. Published 

Online: Feb 10, 1990, 137 (6), 88. 

5. Voegel, J. J.; von Krosigk, U.; Benner, S. A. Synthesis and tautomeric equilibrium of 6-amino-5-

benzyl-3-methylpyrazin-2-one. An acceptor-donor-donor nucleoside base analog. The Journal of 

Organic Chemistry. DOI: 10.1021/jo00078a038. Published Online: Dec 1993, 58 (26), 7542–

7547. 

6. Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T.; Dai, N.; Foster, J. M.; Corrêa, I. R.; 

Romesberg, F. E. A semi-synthetic organism with an expanded genetic alphabet. Nature. DOI: 

10.1038/nature13314. Published Online: May 7, 2014, 509 (7500), 385–388. 

7. Betz, K.; Malyshev, D. A.; Lavergne, T.; Welte, W.; Diederichs, K.; Dwyer, T. J.; 

Ordoukhanian, P.; Romesberg, F. E.; Marx, A. KlenTaq polymerase replicates unnatural base 

pairs by inducing a Watson-Crick geometry. Nature Chemical Biology. DOI: 

10.1038/nchembio.966. Published Online: June 3, 2012, 8 (7), 612–614. 

8. Pfaff, D. A.; Clarke, K. M.; Parr, T. A.; Cole, J. M.; Geierstanger, B. H.; Tahmassebi, D. C.; 

Dwyer, T. J. Solution structure of a DNA duplex containing a Guanine−Difluorotoluene pair: A 

wobble pair without hydrogen bonding? Journal of the American Chemical Society. DOI: 

10.1021/ja7103608. Published Online: April 2008, 130 (14), 4869–4878. 

9. Hare, D. R.; Wemmer, D. E.; Chou, S.-H.; Drobny, G.; Reid, B. R. Assignment of the non-

exchangeable proton resonances of d(C- G-C-G-A-A-T-T-C-G-C-G) using two-dimensional 

nuclear magnetic resonance methods. Journal of Molecular Biology. DOI: 10.1016/0022-

2836(83)90096-7. Published Online: Dec 1983, 171 (3), 319–336. 

10. Seo, Y.; Matsuda, S.; Romesberg, F. Journal of the American Chemical Society 2009, 131, 

5046-5047. 

11. B-Form, A-Form, Z-Form of DNA 

https://bio.libretexts.org/TextMaps/Map%3A_Working_with_Molecular_Genetics_(Hardison)/U

nit_I%3A_Genes%2C_Nucleic_Acids%2C_Genomes_and_Chromosomes/2%3A_Structures_of_

nucleic_acids/B-Form%2C_A-Form%2C_Z-Form_of_DNA (accessed May 5, 2017). 

12. Bertini, I.; McGreevy, K.; Parigi, G. NMR of biomolecules; 1st ed.; Wiley-VCH: Weinheim, 

2012. 

 

 


	2D NMR structural study of a DNA duplex containing two unnatural base pairs
	Digital USD Citation

	tmp.1495648266.pdf.tvwCT

