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Abstract  

 Globally there is a biodiversity crisis, with many groups of species threatened with 

extinction due to changes in the environment and human impacts. Amphibians are one such 

group and according to the IUCN, over 30% of amphibians are threatened by extinction. There 

are many factors have that can explain the decline of amphibians including pollution, habitat 

loss, climate change and disease. One factor is chytridiomycosis, an emerging infectious disease 

caused by the chytrid Batrachochytrium dendrobatidis. The chytrid enters the keratinized skin of 

the amphibian and asexually reproduces, where it disrupts host functions, often leading to host 

death. 

Due to the severity of the disease, mitigation strategies are needed. Current strategies 

such as fungicides and “frog hotels” are not sufficient due to adverse effects and limitations. 

However, microorganisms recently have indicated potential for being used as a mitigation 

strategy. Some species of microorganisms have been observed to reduce the amount of viable B. 

dendrobatidis in freshwater environments and species can reduce infection strength. One 

promising group of microorganisms that can remove B. dendrobatidis are Daphnia spp., 

planktonic crustaceans that live in freshwater and filter feed on unicellular organisms. We 

hypothesize that B. dendrobatidis is a viable food source for Daphnia magna and additionally 

will not be toxic to the D. magna.  

In a laboratory experiment under controlled conditions, one set of D. magna was exposed 

to B. dendrobatidis as the only food source for seven days. Another set of D. magna was exposed 

to dechlorinated water as a control. Under a fluorescent microscope B. dendrobatidis was 

observed in the gut of D. magna that had been fed the B. dendrobatidis and had survived the 

course of seven days. The survival rates between the two experimental treatments did not differ, 
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however B. dendrobatidis was observed to not be toxic to D. magna. Although these results did 

not determine if B. dendrobatidis is a viable food source for D. magna, it does suggest D. magna 

as a potential mitigation strategy. Further experiments need to be conducted to determine to 

which extent Daphnia can be used as a mitigation strategy. 
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Introduction 

The world is amidst a biodiversity crisis. Increasing numbers of species are threatened by 

extinction or are already extinct (Wake and Vredenburg, 2008). Changes within the environment, 

due to habitat loss, pollution, exploitation, climate change, invasive species and disease are 

creating surroundings that no longer support and suit many species. These multifaceted causes, 

often influenced or exacerbated by human interactions are contributing to an overall biodiversity 

loss (Wake and Vredenburg, 2008). 

 Of these groups of species experiencing biodiversity loss are amphibians, which are 

facing a plausible likelihood of extinction (Wake and Vredenburg, 2008). It has been observed 

that the current extinction of amphibians rate is roughly 211 times greater than the background 

extinction rate based upon the fossil record (McCallum, 2007). The acceleration in the extinction 

rate leaves it difficult to explain as a natural phenomenon (McCallum, 2007).  There are multiple 

reasons for this increase in extinction risk, especially since a reliance on cutaneous respiration 

and reproduction in aquatic environments leaves amphibians already vulnerable to slight changes 

within their environment (Wake and Vredenburg, 2008). Plausible explanations for declines 

include competition with invasive species, over exploitation, habitat disruptions, increases in 

toxic chemicals and global warming (Collins and Storfer, 2003). However, recently it has been 

discovered that amphibian declines are part in due to an emerging infectious disease, called 

chytridiomycosis that has been found worldwide in amphibian populations (Fisher et al., 2012). 

Chytridiomycosis is caused by the chytridiomycete fungus, Batrachochytrium 

dendrobatidis (Longcore et al., 1999). Multiple strains of B. dendrobatidis exist and differ in 

virulence when infecting amphibians (Fisher et al., 2009). Strains of B. dendrobatidis are 

currently found on every continent except Antarctica, indicating that most species of amphibians 
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are capable of being exposed to the disease (Fisher et al., 2009). Over 500 of 1240 known 

species of amphibians have been documented as prone to infection (Olson et al., 2013). 

However, not all amphibians that encounter B. dendrobatidis show the lethal symptoms of the 

disease. Some frog species are disease tolerant, enduring some level of infection without 

showing signs of the disease (Fisher et al., 2012; Woodhams et al., 2011). These tolerant or 

carrier species may have contributed to the spread of B. dendrobatidis through natural movement 

across a landscape or even by human translocation (Fisher et al., 2012). The likelihood of 

distribution to new environments by human interactions is increased by the saprobic nature of B. 

dendrobatidis, meaning that the chytrid is capable of living on substrates other than its 

amphibian host (Fisher et al., 2012; Longcore et al., 1999). The capability to survive on multiple 

substrates allows for B. dendrobatidis to persist in the environment, allowing it to continue its 

life cycle if nutrients are available even when susceptible amphibian hosts are not available. 

The life cycle of B. dendrobatidis consists of motile and sedentary stages, the first 

substrate independent and the latter is substrate dependent. The motile stage is defined as 

spherical zoospores that move using a flagellum until they encyst (Berger et al., 2005; Longcore 

et al., 1999). Once encysted on a substrate the sedentary stage begins. Several thread-like 

rhizoids grow from the encysted zoospore forming a zoosporangium surrounded by a chitin cell 

wall (Longcore et al., 1999). In the zoosporangium, zoospores develop and the chitin is broken 

down allowing for several zoospores to be released through a discharge papillae (Longcore et al., 

1999). Zoospores are often motile for less than one day and can span a maximum distance of 2 

cm before encysting, unless there is flowing water present (Piotrowski et al., 2004). This 

characteristic allows for dispersal to new areas as well as reinfection of the host. 
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 B. dendrobatidis infects a host by entering and growing within the stratified epidermal 

cells of keratinizes skin, as an infectious zoospore (Berger et al., 2005; Longcore et al., 1999). 

Therefore, infections are limited to the mouthparts of tadpoles and the legs and body of adult 

frogs where keratinized skin can be found (Daszak et al., 1999; Van Rooij et al., 2015). The 

extent of infection can vary among adult and juvenile frogs, since susceptibility can vary across 

developmental stages (Scheele et al., 2014). In many species of susceptible amphibians, the 

development rate of B. dendrobatidis is similar to the shedding of  the  amphibian skin, allowing 

for the release of zoospores away from the body and reinfection into a nearby part of the host 

body (Berger et al., 2005). Clinical symptoms of adult and juvenile frogs include abnormal 

posture, lethargy, lesions and epidermal sloughing (Daszak et al., 1999). These clinical 

symptoms can leave frogs vulnerable to predation and starvation by making them less active. In 

addition to clinical symptoms, the pattern of B. dendrobatidis growth inhibits the salt absorption 

by the skin (Campbell et al., 2012). This inhibition leads to a depletion that disrupts the 

homeostasis of electrolytes, ultimately leading to cardiac arrest and death of the adults and 

juveniles (Campbell et al., 2012). Clinical symptoms in tadpoles often include a reduction in 

foraging behavior, resulting in reduced tadpole not growth rates (Venesky et al., 2009). 

Chytridiomycosis therefore, can be detrimental to frog populations.  

The effects of B. dendrobatidis are severe on amphibian species, requiring intervention. 

Attempts to eradicate the disease appear futile, resulting in the need for mitigation strategies 

(Kriger and Hero, 2009; Scheele et al., 2014). One method is to reduce the likelihood of 

spreading the pathogen by regulating amphibians in the food trade, screening shipments of frogs 

and screening at zoos or laboratories to prevent the movement of infected individuals (Kriger and 

Hero, 2009). Proposed methods for mitigation in the field include treating environments with 
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fungicides, salts and antibiotics to limit infectious doses of B. dendrobatidis in the environment 

(Woodhams et al., 2011). Another option within the field is to create areas of warmer 

temperatures to allow for basking, to allow amphibians to increase internal temperatures to 

combat the disease (Scheele et al., 2014) . This can be achieved through shallow pockets of 

warm water, introducing warm rocks, canopy free zones and heating stations (Scheele et al., 

2014; Woodhams et al., 2011). To reduce exposure of susceptible populations it has been 

suggested that infected individuals be translocated to eliminate a primary source of disease 

exposure, however the saprobic nature of B. dendrobatidis may allow for the pathogen to still 

persist (Kriger and Hero, 2009). Additional translocation strategies have been proposed such as 

adding frogs when they are less susceptible, such as adults instead of juveniles and ones clear of 

infection, to create a buffering effect for those in the environment (Scheele et al., 2014). Lastly, 

conservation methods for some species has been to remove individuals from the environment 

and allow them to live in captivity or “frog hotels” (Woodhams et al., 2011). All proposed 

methods often have limitations or adverse effects. For example, proposed methods of fungicidal 

treatments could lead to cumulative effects that harm to many organisms (McMahon et al., 

2013). Removing species into captivity can also create situations of reducing genetic diversity 

and can be difficult to accomplish. Therefore, research for additional mitigation strategies in 

necessary.   

Another approach to discovering mitigation strategies has been to observe the differences 

of B. dendrobatidis among environments. It has been noted that the prevalence of B. 

dendrobatidis in different locations varies, locally and regionally even if altitude and temperature 

– major factors in prevalence – are similar (Schmeller et al., 2014). Upon investigating different 

aquatic environments, those with greater prevalence of microorganisms had less B. 
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dendrobatidis, highlighting a potential use as a mitigation strategy (Schmeller et al., 2014). In 

laboratory experiments, microorganisms including rotifers, ciliates and species of Daphnia can 

reduce B. dendrobatidis by predation or passive filtration (Buck et al., 2011; Schmeller et al., 

2014). The presence of microorganisms also reduced infections of tadpoles and the infection 

strength when exposed to B. dendrobatidis (Schmeller et al., 2014). However, reduction of B. 

dendrobatidis in the field can be limited due to complex interactions between the hosts, fungi 

and aquatic microorganisms, providing the need for more research (Buck et al., 2015).  

Daphnia is a genus of small planktonic crustaceans that inhabit freshwater environments. 

Daphnia are grazers that consume nanoplanktonic algae, bacteria, fungi, protozoa and detritus of 

1-100 µm in size (Thorp and Covich, 2010). Species of chytrids can be filtered by grazing 

Daphnia, and digested due to the lack of a thick cell wall (Kagami et al., 2004). For example, the 

chytrid Zygorhizidium planktonicium is rich in supplementary nutrients and can serve as a food 

source for Daphnia (Kagami et al., 2007). Daphnia pulex have been observed having B. 

dendrobatidis zoospores in their guts, highlighting a possibility of reduction of prevalence and 

disease (Buck et al., 2011). Rana aurora tadpoles exposed to Daphnia and B. dendrobatidis in 

mesocosms, resulted in an increase in survival among tadpoles and decrease in zoospores when 

compared to mesocosms without the zooplankton, indicating an immediate effect on the 

amphibians (Hamilton et al., 2012). Daphnia magna, a larger species that can grow to 5 mm 

effectively removed B. dendrobatidis from the environment while smaller Daphnia did not 

suggesting that Daphnia size may influence the potential as a mitigation strategy (Searle et al., 

2013). 

Whereas studies have demonstrated the ingestion of B. dendrobatidis by different species 

of Daphnia, little is still known about the relationship. It is possible that B. dendrobatidis harms 
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Daphnia, an effect that has not been shown, most likely because most studies last only a few 

hours or a day. It is also unknown if B. dendrobatidis is a viable food source for Daphnia. It is 

debated whether Daphnia selectively or passively graze when feeding (Butler et al., 1989; Thorp 

and Covich, 2010). For these reasons Daphnia could either inconsequentially ingesting B. 

dendrobatidis zoospores or may select to feed on other more nutritious organisms when given 

the opportunity. Both possibilities would limit the potential use of Daphnia as a mitigation 

strategy, presenting the need to determine if B. dendrobatidis is a food source. Due to the 

research indicating that other chytrids can be nutritious to Daphnia, our hypothesis was that B. 

dendrobatidis is a food source and nontoxic for Daphnia magna, further highlighting its potential 

use as a mitigation strategy. 

Methods 

 Modified from the protocol used be Buck et al. 2011, a stock solution of Nile Red dye 

was produced by adding 0.0054 g of Nile Red dye to 20 mL of dimethyl sulfoxide (DSMO). The 

Nile Red dye stock was added to a1% tryptone 1% agar solution at a concentration of 500 µg/L. 

This mixed solution was then used to pour multiple plates. Plates were inoculated with 2 mL of 

B. dendrobatidis strain 274. Inoculation of new plates occurred every two days. After nine days, 

plates were used for the experiment.  

D. magna were kept in a 10 L aquarium as well as four 1 L beakers containing 

dechlorinated water prior to the experiment. Every other day the D. magna were fed with filtered 

and diluted green water obtained from the local area that depended on the evaporation rate. 

Enough green water was added to keep the tanks a green, yet clear color. The tanks had bubblers 

for aeriation and were placed next to a light with a timer, giving cycles of 14 hours of light and 

10 hours of dark to the D. magna.  
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Prior to the seven-day experiment, D. magna were added to a 250-mL beaker containing 

dechlorinated water. One inoculated Nile Red plate was flooded with 15 mL of dechlorinated 

water. After fifteen minutes the plates were scrapped, and 8 mL of the water containing B. 

dendrobatidis was added to the 250-mL beaker. Additional D. magna were placed in a 250-mL 

beaker containing dechlorinated water and 8 mL of water from a scraped uninoculated Nile Red 

plate. After three hours of exposure, D. magna were sacrificed in 75% ethanol. The D. magna 

were viewed under a fluorescent microscope to determine if B. dendrobatidis was present in the 

gut and determine if the Nile Red leaches into the flooded water.   

Twelve D. magna; four small, four medium and four large, were added to ten beakers 

filled with a 142 mL of dechlorinated water. The beakers were randomly assigned to either the 

“Control” or “Bd” treatments. D. magna were left untouched in “Control” and “Bd” beakers for 

thirty minutes prior to the application of treatment. For the “Control” treatment, five 

uninoculated plates containing Nile Red dye were flooded with 15 mL of dechlorinated water. 

After, ten minutes the plates were scraped into one beaker. From this beaker, 8 mL of the scraped 

dechlorinated water was added to the “Control” treatment beakers. Five inoculated plates that 

were nine days old were flooded with 15 mL of dechlorinated water. After ten minutes the 

inoculated plates were scraped and pooled into one beaker. From this beaker, the “Bd” treatment 

beakers received 8 mL of dechlorinated water containing B. dendrobatidis. Prior to adding the 8 

mL to the “Bd” treatment, the concentration of B. dendrobatidis was observed in the pooled 

beaker to verify that the concentrations were similar, indicating that during water changes the 

“Bd” treatments were within a reasonable range (Table 1). Additional dechlorinated water was 

added by pipette to the beakers to bring the volume to 150 mL. D. magna deaths were recorded 

daily for each beaker in both treatments for seven days.  
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Water changes were done every two days by filling clean 250 mL beakers with 140 mL 

dechlorinated and transferring individual live D. magna with a pipette. Depending on the 

treatment, 8 mL of dechlorinated water from a scraped inoculated (“Bd”) or uninoculated Nile 

Red plate (“Control”) was added to the new beakers at each water change. After seven days, the 

experiment was ended. On the seventh day surviving D. magna were sacrificed in 75% ethanol. 

A fluorescent microscope was used to view the D. magna to determine if B. dendrobatidis was 

present in the gut.  

Results  

Under green light from a fluorescent microscope, D. magna exposed to B. dendrobatidis 

were observed to have zoospores within the gut after three hours of exposure (Figure 1). The D. 

magna exposed to dechlorinated water from an uninoculated plate for three hours did not 

fluoresce. Seven of the ten surviving D. magna that were exposed to B. dendrobatidis fluoresced 

after the seven-day experiment (Table 2). The seven surviving D. magna were in “Bd” beakers 1, 

2, 4 and 5. All twelve D. magna in “Bd” beaker 3 died by the end of the seven-day experiment.  

The surviving eight D. magna from the “Control” group did not fluoresce. 

A Cox Proportional Hazards test was preformed between the two treatments. A p-value 

of 0.67 was obtained, indicating that the was no significant difference between “Control” and 

“Bd” treatments. On second day of the seven-day experiment, there was a mass die off in both 

treatments. The proportion surviving in the “Control” treatment dropped from 0.9 to 0.3 and the 

proportion surviving in the “Bd” treatment dropped from 0.95 to 0.17 on day two. However, 

after day two there were no additional deaths in the “Bd” treatment, the surviving proportion was 

maintained at 0.17 until the end of the experiment. The “Control” treatment continued to 



11 
 

experience death, with the surviving proportion being 0.13 on the last day of the experiment 

(Figure 2).  

Discussion 

 The fluorescent microscopy demonstrated that D. magna can remove infectious B. 

dendrobatidis zoospores from the environment after three hours of exposure to the chytrid 

(Figure 1). D. magna also remove B. dendrobatidis from the environment after seven-day 

exposure (Table 2). While only seven out of the ten surviving D. magna fluoresced, two were 

molting which could have affected their eating behaviors and the last one had visible B. 

dendrobatidis on the exterior under a light microscope. Since there was visible B. dendrobatidis 

that did not fluoresce, there may have been an issue with the Nile Red or the fluorescent 

microscope. The wide range of fluorescence intensity across the seven surviving D. magna could 

additionally be explained by an issue with the Nile Red dye or the fluorescent microscope. Thus, 

the three non-fluorescing D. magna may not have had enough Nile Red present to indicate that 

the chytrid was present in the gut despite the presence of the chytrid. Conducting a PCR to 

determine if B. dendrobatidis genetic material was present among the D. magna would further 

demonstrate the ability to ingest zoospores. The ability to remove zoospores supports the 

potential use of Daphnia as a mitigation strategy for the deadly amphibian pathogen as discussed 

in previous studies. This finding is helpful since current mitigation strategies such as, fungicides 

and captivation programs as seen in “Frog Hotels” are not ideal (Scheele et al., 2014; Woodhams 

et al., 2011).  

 The hypothesis that B. dendrobatidis would be nontoxic to D. magna was supported by 

the observation of death in both treatments regardless if the chytrid was present. We verified that 

the D. magna in the “Control” treatment were not exposed to B. dendrobatidis as none of the D. 
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magna or water in the treatment fluoresced and no zoospores were observed under a light 

microscope. Also, all the remaining D. magna exposed to B. dendrobatidis survived after the 

mass die off on day two. Therefore, the mass die off on the second would have to be explained 

by other factors.  

 Possible explanations for the mass die off on the second day include: contamination 

and/or shock. Even though an acclimation time was allotted, the switch from the holding tank 

and beakers may have shocked the D. magna. Additionally, the physical movement of the D. 

magna from one beaker to another with each water change may have been a stressor. D. magna 

were transferred from the holding tank to the treatment beakers using a pipette and protocol was 

established to ensure that air pockets would not form. While this method was done slowly, the 

currents created by the pipette could have stressed the D. magna. Alternative methods for 

transferring the D. magna should be tested to find an ideal one that reduces or removes this 

stress. Studies have shown that D. magna when exposed to different salinities than their original 

environment do not thrive as well as those placed in same salinity (Thorp and Covich, 2010). 

However, it was assumed that the temperature, ion levels and pH were the same across all 

beakers, tanks, and containers utilized in this study because the dechlorinated water in the 

treatment beakers and holding tanks were from the same source and located in the same room. 

For these reasons, it is assumed that the water did not shock the D. magna, but in further studies 

measuring the salinity and other water chemistry variables would be beneficial. 

It is inconclusive if shock occurred to the D. magna during the experiment, but there was 

evidence of possible contamination. The dechlorinated water containing B. dendrobatidis from 

the first day was examined under a microscope and was contaminated with unknown bacteria. It 

is unknown when this contamination occurred, however, it could have contributed to the death 
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observed since several known bacterial secretions are toxic to species of Daphnia (Martin-

Creuzburg et al., 2011). A film had also formed on the beakers which was not present in the 

holding tank and beakers. The film could have resulted from not having a bubbler to aerate the 

water. Aeration could eliminate films but, D. magna can easily adapted to different oxygen 

concentrations and will turn a redder hue when exposed to low oxygen (Heisey and Porter, 

1977). Since the D. magna in both treatments were a transparent color, they were not exposed to 

low oxygen concentrations, removing a hypoxic environment as a possible stressor. Therefore, 

aeration is only needed to reduce films. 

While factors of the experimental set-up could have contributed to the mass death, it is 

beneficial to note that B. dendrobatidis is not harmful to D. magna, since the zooplankton is 

important within freshwater ecosystems. Daphnia are key members of freshwater communities 

helping maintain water quality, serving as a food source for fish and indicators for metal 

contamination (Dodson and Hanazato, 1995). This finding further highlights the potential use of 

D. magna as a mitigation strategy. 

Overall, the data from the seven-day experiment suggests that it is inconclusive if B. 

dendrobatidis is a viable food source for D. magna. The mass death on day two, removed many 

of the D. magna from the experiment, limiting the opportunity to find possible differences in 

survival proportions if they existed (Figure 2). Although trends for higher survival proportions in 

the “Bd” treatment existed at the beginning and end of the experiment, they were insignificant. 

However, the existence of these trends highlights the need for more experiments. 

Repeating the experiment again with modifications and an established colony of D. 

magna could reveal conclusive results and further insights to B. dendrobatidis being a viable 

food source for the zooplankton. As mentioned above providing additional steps to eliminate 
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shock such as, better transferring methods, monitoring the water conditions and adding aeration 

need to be included in the set up. A longer acclimation period of twenty-four hours would allow 

for the D. magna to adjust to the new environment and provide a starving protocol. After the 

twenty-four-hour acclimation, any shocked D. magna could be removed to ensure that the 

experiment starts with a healthy sample size. Likewise, we would suggest that the pooled water 

from scraped plates should be examined under a microscope for any possible contaminates 

before use as treatment. While this protocol was included after the mass death, it may have 

eliminated the observed contamination prior to the initiation of the protocol. In addition to 

measures to reduce shock and contamination, more replicates per treatment are needed to obtain 

more data. The larger sample size could also serve as a buffer if unusual deaths were to occur 

again. The experiment should also be carried out for a longer time, such as several weeks. This 

should allow for differences in the D. magna survival to be observed if differences in survival 

between the two treatments do indeed exist. Additional observations could be made to note the 

health of the D. magna in the treatments. Stress due to poor food quality, is indicated by a 

reduction in offspring, an increase in asexual reproduction of “resting eggs” as well as reduced 

growth in Daphnia (Steinberg et al., 2010). If the treatment with B. dendrobatidis were to exhibit 

D. magna that did reproduce live offspring it could indicate that the zoospores are providing 

quality nutrition. Therefore, monitoring reproduction of live offspring, growth and the amount of 

asexual reproduction could give insight to the nutritional value. 

Additional experiments would be necessary to have a more complete understanding of 

the interactions of Daphnia with its environment. The interactions between Daphnia and other 

species have intricate and not well known consequences, requiring further research (Woodhams 

et al., 2011). Some Daphnia. are known to prey upon other known consumers of B. 
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dendrobatidis such as ciliates and may compete with these consumers as well (Schmeller et al., 

2014). Experiments with different ecological assemblages of these other known B. dendrobatidis 

consumers would give insight on the cumulative effect and if it would alter the filtration done by 

Daphnia. Field experiments would give insights into understanding if Daphnia. will selectively 

graze on other known food sources or if it is a selective grazer. For example, when Daphnia 

were placed in water that contained large amounts of algae, a main food source, the amount of B. 

dendrobatidis did not reduce significantly, suggesting that Daphnia may selectively graze for 

algae over zoospores (Searle et al., 2013). If this trend were to be observed in future experiments 

it would limit its potential use as a mitigation strategy. 

Other chytrids have zoospores that provide nutrients such as nitrogen, vitamins and fatty 

acids that contribute to the growth and reproduction of the zooplankton (Gleason and Lilje, 

2009). As a chytrid, B. dendrobatidis shares similar chemical makeup to the other known 

nutritional chytrids, suggesting that it could contain nutritional value if Daphnia is capable of 

digesting. Further research determining the nutritional value and chemical make-up of B. 

dendrobatidis would be useful in addressing this possibility. 

This study focused on elucidating one of the complex interactions that occur in a natural 

aquatic environment, between D. magna and B. dendrobatidis. Although the results were 

inconclusive if B. dendrobatidis is a viable food source for D. magna it did indicate that the 

zoospores can be ingested and that B. dendrobatidis is nontoxic to the D. magna zooplankton. 

These observations highlight the possibility of using D magna and potentially other Daphnia as a 

mitigation strategy for combating infections of amphibians by this deadly pathogen. However, 

limitations are also present since Daphnia are difficult to keep alive and struggle to survive in 

environments different from their own. Utilizing an organism naturally found in these 
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ecosystems would be an ideal mitigation strategy, since current strategies like fungicides can 

cause harm to the surrounding ecosystems. Fungicides currently proposed have been observed to 

have adverse effects on tadpoles, frogs, zooplankton like Daphnia as well as other organisms 

(McMahon et al., 2013). These adverse effects include death or shorten life spans in some cases, 

potentially aiding in the prevalence of B. dendrobatidis. Other strategies such as removing 

amphibians from the environment and placing in captivity have drawbacks, such as the effort to 

move and treat as well as removing essential components of the food web. Looking for other 

options that do less harm, such as adding organisms in that are already present may have better 

long term and short-term implications. These mitigation strategies will give further insight into 

the complex interactions of B. dendrobatidis and its environment, hopefully leading to a 

resolution for the declining amphibian populations, diminishing the biodiversity loss. 
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A. 

 

B. 

 

Figure 1. (A) Anatomy of D. magna under bright field microscope at 40x. (B) D. magna shown 

with excited Nile Red, stained B. dendrobatidis in the gut when viewed under green light at 40x. 
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Figure 2. D. magna survival per treatment over the course of the seven-day experiment with a p-

value of 0.67. 
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Table 2. Concentrations of B. dendrobatidis for the “Bd” treatment water changes 

Day B. dendrobatidis zoospores/mL 

0 62,000 

2 116,000 

4 62,000 
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Table 2. Fluorescent microscopy of surviving D. magna exposed to B. dendrobatidis 

Beaker 

Number 

Individual Fluoresced Description 

1 2-small Yes Dim glowing 

 3-small Yes Also had globular growths 

 4-small No Molting 

2 2-small Yes Some B. dendrobatidis on exterior 

 3-small Yes B. dendrobatidis on exterior 

 4-small No B. dendrobatidis on exterior 

4 2-small No Molting 

 3-small Yes Dim glowing 

 4-small Yes Bright glowing 

5 4-small Yes Glowed through out 
*All D. magna died in beaker number 3 after the seven-day experiment 
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