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Molecular profiling of high-level athlete skeletal
muscle after acute endurance or resistance
exercise e A systems biology approach

Stefan M. Reitzner1,2,*, Eric B. Emanuelsson1, Muhammad Arif3, Bogumil Kaczkowski4, Andrew TJ. Kwon4,
Adil Mardinoglu3,5, Erik Arner4,6, Mark A. Chapman7,8, Carl Johan Sundberg7,9,10

ABSTRACT

Objective: Long-term high-level exercise training leads to improvements in physical performance and multi-tissue adaptation following changes
in molecular pathways. While skeletal muscle baseline differences between exercise-trained and untrained individuals have been previously
investigated, it remains unclear how training history influences human multi-omics responses to acute exercise.
Methods: We recruited and extensively characterized 24 individuals categorized as endurance athletes with >15 years of training history,
strength athletes or control subjects. Timeseries skeletal muscle biopsies were taken fromM. vastus lateralis at three time-points after endurance
or resistance exercise was performed and multi-omics molecular analysis performed.
Results: Our analyses revealed distinct activation differences of molecular processes such as fatty- and amino acid metabolism and transcription
factors such as HIF1A and the MYF-family. We show that endurance athletes have an increased abundance of carnitine-derivates while strength
athletes increase specific phospholipid metabolites compared to control subjects. Additionally, for the first time, we show the metabolite sorbitol
to be substantially increased with acute exercise. On transcriptional level, we show that acute resistance exercise stimulates more gene
expression than acute endurance exercise. This follows a specific pattern, with endurance athletes uniquely down-regulating pathways related to
mitochondria, translation and ribosomes. Finally, both forms of exercise training specialize in diverging transcriptional directions, differentiating
themselves from the transcriptome of the untrained control group.
Conclusions: We identify a “transcriptional specialization effect” by transcriptional narrowing and intensification, and molecular specialization
effects on metabolomic level Additionally, we performed multi-omics network and cluster analysis, providing a novel resource of skeletal muscle
transcriptomic and metabolomic profiling in highly trained and untrained individuals.

� 2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Keywords Molecular exercise effects; Metabolomics; Multi-omics; Human; Systems biology; Athletes

1. INTRODUCTION

High-level physical training results in exercise modality-specific ad-
aptations in skeletal muscle that are partly due to transient as well as
accumulating changes in gene expression, protein levels and modifi-
cations as well as in metabolite levels [1e3]. Following each exercise
bout, such changes are influenced by an interaction between signaling
molecules and the transcriptional machinery, over time contributing to
the gradual remodeling of skeletal muscle [3]. The structural and
biochemical remodeling that has accrued in trained skeletal muscle, in

turn, influences its transcriptional and metabolic response to acute
exercise bouts [4,5]. Previous investigations of skeletal muscle gene
expression following acute exercise bouts or exercise training pro-
grams [4,6e8] have mostly been limited either by exercise intervention
duration (weeks to months) or training status of the population studied
(untrained to recreationally active). Other investigations of acute ex-
ercise effects have focused on blood only [9]. Accordingly, to overcome
such limitations, we recruited two groups of long-term trained (15þ
years) endurance and resistance athletes and one age-matched un-
trained control group. All participants performed acute bouts of
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endurance and resistance exercise in a cross-over design before and
after which biopsies were obtained from skeletal muscle on which
multi-omics analyses were conducted.
The aim was to identify key molecular pathways connected to physical
performance capabilities, comparing group differences in training his-
tory and modality of acute exercise to better understand the molecular
trajectories following acute exercise. During subject characterization,
several performance parameters were measured. The association be-
tween such markers and molecular level pathways and metabolites can
be of great value for the identification of processes that drive skeletal
muscle performance and health. Increased understanding of such
molecular characteristics can be clinically relevant for the development
of strategies to prevent, treat and assess the status of diseases like
diabetes, metabolic syndrome, cardiovascular disease, cancer or
enabling beneficial exercise-induced effects when exercise is not an
option. Furthermore, an increased understanding of the biology in long-
term trained athletes could provide valuable knowledge for training
protocol optimization by refocusing on training modalities that trigger
key performance-relevant adaptations such as introducing endurance
and resistance elements in strength and endurance athletes, respec-
tively. While efforts have previously been made to understand and
identify such processes in different tissues or with short duration ex-
ercise interventions [9], no study to date has systematically investigated
the influence of long-term high-level training on the collective tran-
scriptome, metabolome and transcription factor (TF) motifs response to
different forms of acute exercise in human skeletal muscle.
Results from our comprehensive characterization of the transcriptomic,
metabolomic and regulatory response to acute exercise show exten-
sive differences based on training history, amongst others due to
sports-specific specializations in energy metabolic pathways. The
results reveal distinct molecular differences between acute endurance
and resistance exercise and, by using correlation analysis identify key
metabolic processes that could act as key drivers to performance
output such as carnitine and amino acid metabolisms. Taken together,
we deliver for the first time, a multi-omics characterization of skeletal
muscle from highly trained individuals. Additionally, we provide a
valuable, easy to use public resource (https://bit.ly/iNetModels_
CrossEX (Multi-omics network / Study-specific Networks /
crossEX (Reitzner et al., 2024)) for future investigations of the mo-
lecular effects of acute exercise and long-term adaptation, highlighting
the potential of a multi-omics profiling approach.

2. METHODS

Ethical approval
Before the interventions, all subjects were informed about the study
outline, familiarized with the experimental procedures and potential
complications and written and verbal consent was obtained. The study
was approved by the Stockholm regional ethics board (Dnr: 2016/590-
31) under observance of the declaration of Helsinki.

2.1. Participant recruitment and inclusion
Twenty-four healthy, non-smoking men aged 33e52 were recruited
after filling in a questionnaire to assess their training history and health
status and a selection process including peak oxygen uptake test
( _VO2peak test) and maximum knee torque test measured by unilateral
isokinetic Biodex test (Biodex System 4, Biodex Medical Systems,
Shirley (NY), USA) to fit into one of three groups: resistance trained
(SG), endurance trained (EG) and control (CG). _VO2peak test was
performed on a stationary bike and initial resistance individually set
depending on expected subject performance. After 5 min of warm-up

cycling, resistance was increased incrementally between 16.6 and
26.6 W,min�1 until exhaustion. All subjects reaching a respiratory
exchange ratio (RER) above 1.05. Inclusion into the EG required a
_VO2peak above the 90th percentile of the subject’s age group [10].
Additionally, knee extension 1 repetition maximum (1RM) was
measured and controlled using the Borg RPE scale [11]. Inclusion into
the SG required a peak torque of at least two standard deviations above
the mean of the control group (Table 1). The resistance and endurance
trained athletes were required to have either a resistance- or an
endurance-based training history at high level of at least 15 years
respectively. These groups were clearly separated by both, _VO2peak
and maximum knee torque (Table 1). Thresholds for _VO2peak and
peak torque were selected to be identical to our previously published
cross-sectional study to ensure maximal comparability [12].

2.2. Study design
All subjects completed both a single bout of EE and RE in randomized
order with at least one month of wash-out in between (Figure 1A). Food
intake was controlled for by a standardized breakfast and the in-
struction to eat the same dinner on the day before each of the inter-
vention days. After a standardized breakfast 3 h prior to the first biopsy
timepoint, subjects arrived between 8:00 and 9:00 in the morning at
the Division for Clinical Physiology research unit at the Karolinska
Hospital in Huddinge, Sweden. Subjects were then randomized to
either an acute endurance or acute resistance exercise session. After a
resting skeletal muscle biopsy was taken using the Bergström needle
technique with suction from M. vastus lateralis, subjects performed
30 min of acute exercise. Subjects were pushed to their maximum
performance in each session. For acute endurance exercise, subjects
were required to cycle at 75 % of their individual Wmax for 30 min. For
acute resistance exercise, subjects were required to complete 9 sets of
8 repetitions of knee extension (set length 40 s; set break, 150 s)
exercise at 80 % of their individual one repetition maximum. Following
the conclusion of the acute exercise, three additional skeletal muscle
biopsies were taken from M. vastus lateralis immediately following
acute exercise and 1 h and 3 h after the end of the acute exercise.
Between 4 and 8 weeks after the first session, all subjects returned to
perform the form of exercise they have not been randomized for the

Table 1 e Basic characterization of research subjects.

Group Control (CG) Endurance (EG) Strength (SG)

n 8 8 8
Age (yrs) 44 � 6 42 � 5 39 � 6
Height (cm) 181 � 6 182 � 4 180 � 5
Weight (kg) 76 � 8 73 � 4 92 � 12 *

BMI (kg/m2) 23.1 � 2.4 22.3 � 0.5 28.3 � 2.9 *

Leg strength (Nm) 180.6 � 30.8 198.3 � 25.5 286.4 � 28.1 *

Leg strength (1RM; kg) 39.35 � 7.02 51.13 � 4.98 # 75.45 � 8.55 *
_VO2 peak (ml,kg�1

,min�1)
36.2 � 4.4 69 � 7.2 * 40.2 � 6.9

_VE/ _VCO2 slope 35.8 � 5.9 * 28.9 � 2.8 30.2 � 1.6
CS activity (nmol,min

�1,mg protein�1)
5.0 � 0.5 10.1 � 1.5 * 4.2 � 0.7

Proportion type 1 fibers (%) 44.6 � 4.4 61.4 � 3.9 * 43.0 � 3.2
Proportion type 2 fibers (%) 55.4 � 4.4 38.6 � 3.9 * 57 � 3.2
Type 1 CSA (mm2) 4841.7 � 561.2 * 6048.3 � 257.8 6660.6 � 522.3
Type 2 CSA (mm2) 5369.5 � 860.3 6632 � 665.2 # 9184 � 415.2 *

Nuclei/type 1 fiber 2.6 � 0.6 3.4 � 0.5 # 4.4 � 0.6 *

Nuclei/type 2 fiber 2.9 � 0.9 2.6 � 0.8 4.5 � 0.9 *

Values are group mean � SD. (*: p < 0.05 compared to both the other groups; #:
p < 0.05 compared to CG. _VE ¼ minute volume, _VCO2 ¼ volume of exhaled carbon
dioxide, CS ¼ citrate synthase, CSA ¼ cross-sectional area).
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first occasion and skeletal muscle biopsies were again collected at a
total of four timepoints.

2.3. Skeletal muscle tissue biopsies
Skeletal muscle biopsies were taken alternating from left and right
M. vastus lateralis before and directly after and at 1 h and 3 h after one
single bout of exercise using the Bergström needle technique [13]. To
prevent possible dominant/non-dominant leg effects, the first muscle
biopsy was taken from either the dominant or the non-dominant leg by

randomization. The skeletal muscle biopsies were then snap-frozen
using 2-methylbutane as a secondary coolant.

2.4. Baseline tissue characterization

2.4.1. Enzyme extraction and enzymatic assays
Enzymes were extracted using a phosphate-based buffer (50 mM
KH2PO4, 1 mM EDTA, 0.05 % Triton X-100) and quantified by Bradford
assay (Bio-Rad #5000006, Bio-Rad, Hercules, CA, USA). Citrate

Figure 1: Study Design, Molecular Response to Exercise and overlap of DEGs, (A) Overview over the study design. Two bouts of endurance (EE) or resistance exercise (RE)
were performed in a randomized cross-over design and skeletal muscle biopsies taken at 4 timepoints. (B) Cardiopulmonary (CPX) and strength testing and analyses performed. (C)
Multi-omics response to acute exercise by subject group with the percentage of total significantly affected by EE or RE. (D) Overlap of differentially expressed genes compared to
the respective pre timepoint. Widths of arches and segment lengths are proportional to the number of DEGs. (E) Within subject group coefficient of variation of analytes (transcripts,
directly measured metabolites and transcription factor motifs) at baseline and in response to acute endurance or resistance exercise (mean of time course).

MOLECULAR METABOLISM 79 (2024) 101857 � 2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
www.molecularmetabolism.com

3

http://creativecommons.org/licenses/by/4.0/
http://www.molecularmetabolism.com


synthase activity was measured spectrophotometrically as previously
described [14].

2.5. Immunohistochemical fiber typing
Skeletal muscle samples were cut on a cryostat (CryoStar NX70, Thermo
Scientific, Waltham, MA, USA) at 7 mm and immunohistochemically
stained for Type I (DSHB, Cat# BA-F8, RRID:AB_10572253) and Type II
(DSHB, Cat# SC-71, RRID:AB_2147165) fibers and Laminin (Sigma-
Aldrich, Cat# L9393, RRID:AB_477163). Compatible fluorescent anti-
bodies were used for detection with the Olympus IX-73 wide-field
fluorescence microscope (Olympus Corp., Shinjuku, Tokyo, Japan).
Analysis of immunohistochemically stained cross-sectional cuts was
performed blinded using ImageJ.

2.6. RNA sequencing
RNA extraction from skeletal muscle tissue was performed using the
phenol based TRIzol method (Invitrogen #15596018, Thermo Fisher
Scientific, Waltham, MA, USA), quantified and quality checked using
the 2100 Bioanalyzer System (Agilent Technologies, Santa Clara, CA,
USA). Libraries were prepared by poly-A selection (TruSeq mRNA,
Illumina, San Diego, CA, USA) and multiplexed at the National Geno-
mics Infrastructure Sweden. Clustering was done by ‘cBot’ and
samples were sequenced on NovaSeq6000 (NovaSeq Control Software
1.6.0/RTA v3.4.4) with two lanes of a 2x151 setup ‘NovaSeqXp’
workflow in ‘S4’ mode flow cell. The Bcl to FastQ conversion was
performed using bcl2fastq_v2.20.0.422 from the CASAVA software
suite. The quality scale used is Sanger/phred33/Illumina 1.8þ. QC and
processing were performed using the nfcore/rnaseq analysis pipeline
publicly available at github (https://github.com/nf-core/rnaseq). The
RNA-sequencing data has been deposited at the European Genome-
phenome Archive (EGA) which is hosted at the EBI and the CRG, un-
der accession number EGA: EGAS00001006139.

2.7. Semi-targeted metabolomics by gas- and liquid
chromatography (GC/LC)-MS
Metabolic profiling by GC-MS and LC-MS was performed at the
Swedish Metabolomics Center in Umeå, Sweden. For more details see
supplemental methods. Metabolomics data is available as supplement
to this paper.

2.8. Quantification and statistical analysis
Statistical analyses were performed with R version 3.6.0. For baseline
analyses, ANOVA and t-test were used. Gene expression was
measured by differential gene expression determined by edgeR
package analysis [15]. Analyses were also performed with subject
groups or acute pooled to provide results for a background-
independent general training effect. Repeated testing corrections
were performed using the Benjamini-Hochberg method [16]. A
searchable excel-format differential gene expression analysis results
data table is available as Supplement B to this paper. Using the data
from differential gene expression analysis, gene set enrichment was
determined by fGSEA based on log(FC)-sorting using the GO collections
“cellular component”, “molecular function” and “biological process”.
Gene and metabolite clustering was performed using k-means unsu-
pervised clustering.
Area under der curve (AUC) for each gene was calculated using
trapezoid integration and used for correlation analysis with baseline
physiological performance markers _VO2peak and peak torque using
Pearson’s correlation coefficient. Modelling of top genes explaining
_VO2peak and peak torque was performed with linear modelling.

Genome-scale Metabolic Modelling (GEM) was performed using RNA
sequencing results. Using GEMs, metabolites and metabolic pathways
can be inferred by modelling metabolome information onto RNA
sequencing results. Generic human model, HMR version 2.00 was used
to generate gene-metabolite networks as previously described [17].
Regulatory motif analysis was performed using a motif activity
response analysis (MARA) algorithm [18] and the FANTOM5 database
of regulatory annotation [19,20]. Of the 192 available motifs from the
FANTOM5 annotation, 79 were left after running the MARA algorithm.
These transcription factors motifs were assessed for their member
genes that drive the temporal shape of the response to acute exercise.
Only DEGs that were considered differentially regulated in the
respective comparison in the differential gene expression analysis
were considered for correlation to the motif using Pearson’s correlation
coefficient. Verification of gene-gene interactions within regulatory
motifs was performed using the tissue and cancer specific biological
networks (TCSBN) database [21]. The multi-omics network was
generated by using the same pipeline/method as described in iNet-
Models [21,22].
Alpha was set to 0.01, unless stated otherwise, error bars represent
standard error of the mean.
Further information and request for resources and reagent should be
directed to and will be fulfilled by the lead contact, Stefan Markus
Reitzner (stefan.reitzner@ki.se).

3. RESULTS

3.1. Subject characterization and analyses performed
Highly characterized healthy male subjects (n ¼ 24) between 33 and
52 were recruited into three groups based on self-reported training
history and a series of physiological performance tests ( _VO2peak, 1
repetition maximum and peak torque knee extension, Table 1): long-
term high-level trained endurance (EG) and strength (SG) athletes
and age-matched untrained healthy participants (CG). Inclusion criteria
were based on leg strength, _VO2peak test and training history and
identical to our previously published cross-sectional study [12]. The
research subjects underwent a series of skeletal muscle biopsies
before and after two acute exercise interventions separated by 1e2
months (Figure 1A). Subsequently, RNA sequencing (transcriptome),
liquid and gas chromatography-mass spectrometry (metabolome,
lipidome), and in-silico genome scale metabolic modelling (GEM) [17]
and TF motif activity response analysis (MARA) [23] were performed
(Figure 1B). In addition to 11 physiological and histological parameters
(see Table 1), the final dataset included a total of 20223 analytes,
composed of: 15701 genes, 279 metabolites, 4164 reporter metab-
olites e markers of in-silico inferred metabolic flux, and 79 TF motifs
(Figure 1C).

3.2. Baseline physiological, biochemical and histological
differences
By design, leg strength was significantly higher in the strength group
(SG) compared to both control group (CG) and endurance group (EG;
Table 1) without any overlap. _VO2peak in EG was significantly higher
than both other groups, and SG leg strength significantly higher than
both EG and CG. Similarly, skeletal muscle citrate synthase (CS) activity
was significantly higher in EG than both other groups, a consequence
of long-term endurance training [24]. Skeletal muscle type 1 fiber
proportion was significantly higher in EG compared with both other
groups (Table 1, Figure S1), a difference that has been observed before
[25,26]. Muscle fiber cross-sectional area (CSA) was significantly
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lower in CG for type 1 compared to both other groups. EG and SG had a
similar type 1 CSA but a significantly larger type 2 CSA was observed in
SG (Table 1, Figure S1).

3.3. Molecular inter- and intra-group differences at baseline

3.3.1. Variability of omics
Descriptive statistical analyses on our dataset (Figure 1E,B,
Figure S2BeE) demonstrated that the within-group coefficient of
variation (CoV) of analytes at baseline was similar in all groups but
varied depending on omics-level (Figure 1E left), demonstrating a
consistent intra-group variability of omics across groups at baseline
with no significant group difference. Previous publications have re-
ported long-term exercise training to have a consolidating effect for
individual molecular analytes [27] or in response to acute exercise
[12], increasing similarity between athletes. Our results showed that
intra-group analyte-wise variation was similar across groups regard-
less of training status (Figure 1E, Figure S2E), suggesting that the
molecular adaptation of high-level athletes lies in the fine-tuning of
pathways and individual genes and metabolites rather than in the
overall omics dimension. When comparing intra-individual gene
expression between the two pre timepoints, small differences were
found, with a mean fold difference close to zero, and only 3.12e
3.96 % of all transcripts displaying a fold change of 0.5 or higher
(Figure S2B). These results provide an interesting benchmark of
inherent, day-to-day shift of individual baseline gene expression.
These can be the product of slight differences in daily conditions
regarding nutrition, sleep, immune system status or other factors.
While we are confident that we tightly controlled for some of the above-
mentioned factors insofar possible, remaining variation can be a
product of random or environmental factors such as seasonality, which
up to 10 % of all genes in skeletal muscle might be influenced by [28].
However, with the average distance between intervention days being
55 days this should not be a major factor. Taken together, our data
indicates a low level of baseline gene expression variability.

3.3.2. Gene expression and metabolomic group differences
Comparing gene expression at baseline, the results showed smaller
differences between CG and SG (57 DEGs) than between the EG and
both other groups (1363 DEGs vs CG and 919 DEGs vs SG; Supplement
A, Table S1), similar to what has previously been shown by us [12].
Using gene set enrichment analysis (GSEA), we show that these DEGs
are associated with mitochondrial pathways enriched in the endurance
group, while differences between CG and SG are mainly attributed to
immune system and structural terms (Figure S2D).
On metabolomic level, SG showed to have high inter-individual diversity
of metabolite levels of sorbitol, gluconic acid and erythritol (Figure S2A),
all previously reported to play a major role in skeletal muscle glucose
metabolism in rodents [29e31]. We found metabolic baseline differ-
ences between groups (see Supplement A, Table S2 and Figure S2C).
Specifically, carnitines were more abundant in the EG compared to both
other groups, representing about 20 % of the significantly different
metabolites. Carnitines act as intracellular chaperone molecules for
beta-oxidation via the carnitine-palmitoyltransferase system which have
a rate-limiting role [32,33] for the transport of fatty acids across the
mitochondrial membranes. They have been reported to be elevated in
circulating blood of high-level trail runners [34]. High concentrations of
different length fatty acids bound to their carnitine transporters, such as
propryonyl- or butyrylcarnitine can be interpreted both as a higher
potential for beta-oxidative capacity and higher levels of ongoing beta-
oxidation at rest [35]. Such an adaptation is of great benefit for

endurance exercise, but generally of less relevance to resistance ex-
ercise. About 30 % of all metabolites that were significantly more
abundant in SG than in CG were the phospholipid groups of phos-
phatidylcholines (PC) and phosphatidylethanolamines (PE), of which
75 % were unsaturated and only 25 % saturated, which have previously
been described as relevant for membrane fluidity [36], insulin receptor-
and membrane protein dynamics [37,38] and mitochondrial structure
[39] (Figure S2C). The positive effect of RE on insulin sensitivity and
membrane fluidity has previously been demonstrated [40,41], and has
been shown to be a consequence of a more flexible recruitment of
GLUT4 into the plasma membrane [42], thus aiding glucose uptake.
Together, both these metabolic PC-PE and carnitine profiles found in SG
and EG, are consistent with the respective functional requirements of
high-level endurance and resistance exercise.

3.4. Molecular response to acute exercise
The acute response to exercise has been suggested to follow a time-
specific choreography, modulated by acute exercise modality and
training background [9,43]. To better understand this modulation, we
compared trajectories of differentially expressed genes (DEGs). An
overview can be found in Figure 3A. Together with the higher number
of DEGs in response to RE (Figure 1C), this data shows a more robust
activation of M. vastus lateralis gene expression in response to RE
compared to EE. Exercise modality showed to have a bigger role for
gene activation than training background as indicated by stronger
connections between same type acute exercise than within subject
group (Figure 1D, Figure S3B). The most unique set of differentially
expressed genes was found at the 3h timepoint with as much as 84 %
of genes in EG performing RE (Figure S3A). Interestingly, compared to
the 3h timepoint, the earlier timepoints resulted in a more coordinated
gene expression response as measured by numbers of highly enriched
pathways identified by GSEA. Such a pattern might be explained by EG
being highly capable of meeting acute energy requirements of RE, but
exhibiting a chaotic, less coordinated response, similar to untrained
individuals at later stages. In contrast, as a first indicator of a group
difference in the response to acute exercise, CG and SG show a high
degree of significantly enriched pathways at the 3h timepoint
(Figure 2A), particularly in response to RE rather than EE.

3.4.1. Functional annotation of differential gene expression
Further GSEA analysis showed angiogenesis-, immune system-,
growth factor- and transcription-related pathways to be upregulated
across all groups and both interventions (Figure 2A). However, path-
ways related to mitochondria/cellular respiration and transcription/
ribosome were uniquely downregulated in EG in response to both EE
and RE (Figure 2A), particularly at the post timepoint (Figure 2B). Here,
the 5 out of 17 pathways of the mitochondria/cellular respiration class
at the post timepoint in CG had an average normalized enrichment
score (NES) of�1.83, while EG had�2.68 and the one pathway in SG
-2.07. In both 1h and 3h timepoints, only EG had significant pathways
which had an average NES of �1.89 and �1.81 respectively
(Figure 2A). In the transcription and ribosome class at the post time-
point, due to the large proportion of down-regulated pathways, EG
showed and average NES of 0.07, while CG and SG had 1.08 and 2.07
respectively. Mitochondria are a major target of skeletal muscle
adaptation, particularly following endurance training, influencing their
biogenesis [44], plasticity [45], increasing cristae density [45] and
potential citrate cycle throughput as measured by CS activity [46e48],
which was significantly higher in EG compared to both CG and SG
(Table 1). As shown above, EG unlike both CG and SG has increased
baseline enrichment of pathways contributing to mitochondrial
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Figure 2: Functional analysis of the transcriptomic response to acute endurance and resistance exercise. (A) Gene set enrichment analysis (GSEA) of DEGs for acute
endurance (EE) and resistance exercise (RE). Individual pathways are summarized by supergroups. (B) Ridge plot of mitochondrial and cellular respiration pathway molecular
signatures from A. (C) Gene pattern identity from unsupervised clustering of genes of the endurance group performing EE (left) and the strength group performing RE (right) are
used to compare the same sets of genes in all groups. Corresponding GSEA of patterns are shown on the far right in (C). Colors represent gene ontology collection of origin, labelled
large dots are exercise-relevant pathways while small dots represent other pathways. (D) Projection (plotting of DEGs from one timepoint across the remaining timepoints; origin
comparison timepoint with grey background) of DEGs comparing groups at individual timepoints to the remaining timepoints (mean � confidence interval).
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biogenesis and building up their function (Figure S2D). The afore-
mentioned downregulation (Figure 2A) might potentially represent this
high mitochondrial capacity of EG, providing sufficient amounts of
energy substrates during acute exercise, and immediate down-
regulation upon cessation of exercise beyond baseline levels due to a
complete saturation with energy substrates. Since both the EG and the
SG are highly specialized in their respective disciplines, it is likely that
their acute exercise transcriptomic response is highly optimized.
Considering this notion, we were interested in how the sets of genes
stimulated in highly adapted athletes respond in both the groups naïve
to that form of exercise, CG and SG being endurance training-naïve,
and CG and EG being strength training-naïve. To do so, we performed
unsupervised clustering of DEGs of EG performing EE, and SG per-
forming RE. The same genes were then plotted as clusters for all
groups, enabling a direct group comparison of each cluster of DEGs.
Results show a more pronounced response in EG (pattern 1, 3, 5;
Figure 2C) following EE, while the same was true in SG following RE
(pattern 1, 5; Figure 2C). At the same time, all groups showed the
same general response shape, thus similar transcriptomic programs
being stimulated by acute exercise regardless of training history. This
could suggest that the differences between highly trained and exer-
cise-naïve individuals in the omics dimension lie in a more efficient and
fine-tuned degree of gene expression changes, rather than a large re-
arrangement of much of the transcriptome, notwithstanding possible
large differences on the level of individual genes. Functional profiling of
patterns 1, 3 and 5 in EE showed an association with regulation of
transcription, structural, myofibrillar and translation related terms. RE
patterns 1 and 5 were associated with regulation of transcription,
developmental process, morphogenesis and growth. Overall, less
distinct group differences were found following RE, which is in line with
the above-mentioned similarity between CG and SG, suggesting a
smaller transcriptional response to RE than to EE. We also performed
this analysis based on clustering from CG, with some but less striking
differences (Figure 3C; pattern 2 EE and 5 RE). Further comparison of
group differences additionally supported this previously mentioned
notion of a broad but fine-tuned acute gene regulation (Figure 2D,
Figure S3D). For this, we used group-comparison DEGs from each
timepoint and plotted summary-level expression across all timepoints
(Figure 2D). Across the majority of comparisons in response to both RE
and EE, gene trajectories are largely parallel, however staying clearly
separated in most cases, especially comparing SG and EG (Figure 2D
bottom panel, Figure S3C). Together, this suggests that the acute form
of exercise dictates the pattern of the transcriptomic response, irre-
spective of training background, albeit with different amplitudes of the
induced differential gene expression.

3.4.2. Generation of a genome-scale metabolic network
To expand the perspective on the dynamics of metabolites in response
to acute exercise, we used the transcriptomic data to generate a
genome-scale metabolic network (GEM) by integration with an atlas of
human metabolic equations and pathways [17]. Most notably, the
generated GEM showed a large change in EE stimulated metabolic flux
at the post timepoint in the EG but not in CG and SG. Immediately after
EE, EG showed to have 362 significantly affected reporter metabolites,
of which 332 were in the negative direction (Figure 1C). CG and SG
showed 45 and 62 affected reporter metabolites respectively, mainly in
the positive direction. Using KEGG, the EG reporter metabolites were
largely mapped to energy-related metabolic processes such as TCA
cycle and fatty acid metabolism (Figure S5A). These results further
reinforce our GSEA-based findings of a large-scale downregulation of
mitochondria and cellular respiration pathways immediately following

EE in EG, but not in the CG and SG (Figure 2A,B). This drastic, im-
mediate down-regulation following EE might indicate a tighter control
over up- and downregulation of an acute exercise transcriptomic
profile in EG. This is exemplified in an abrupt cessation of transcription
of energy-pathway related genes immediately after the end of the
acute exercise and a drop in ATP demand, compared to both CG and
SG and can represent yet another important optimization of the mo-
lecular layout in EG.

3.4.3. Metabolomics
After this first predictive perspective on metabolic flux, the abundance
of 279 metabolites were directly measured by targeted LC/GC-MS.
Following unsupervised k-means clustering of significantly changed
metabolites [49], they were annotated by their metabolic superpath-
ways (Figure 3A, Figure S4A). An interesting and novel finding was that
the metabolite sorbitol, a product of aldose reductase and the first step
of the polyol pathway, showed to be most responsive to acute exercise
in all comparisons. While studies on its effect in skeletal muscle are
sparse, some authors have suggested sorbitol can cause hyperosmolar
stress, positively affecting glucose uptake [50,51]. Though not re-
ported to be acutely regulated in human muscle before, its proposed
function would be consistent with the energy requirements during and
following acute exercise. Cluster analysis further revealed differences
in how lipid-associated metabolites respond to acute exercise in EG:
Following EE, the majority of lipid-associated metabolites were upre-
gulated (8 metabolites; clusters 3 and 4; Figure 3A), compared to 4
metabolites in response to RE (cluster 3) and 3 out of 4 metabolites in
the downregulated cluster being lipid-associated (cluster 5). Closer
investigation of the lipid superfamily showed derivatives of carnitine
oppositely affected in response to EE (4 derivatives up-) and RE (3
derivatives downregulated). The remaining lipid-associated metabo-
lites were regulated in the same direction (Figure 3B,D). In EG,
modification of the carnitine shuttle, trafficking long chain fatty acids
into the mitochondrion for beta oxidation, constitutes yet another
hallmark of energy flux optimization in skeletal muscle tissue. This
process results in a reduction in free carnitine and an increase in
carnitine derivatives [52]. The ratio between the two has been used as
a marker of the utilization of beta-oxidation in metabolic disorders
[53,54]. Comparably, a distinct difference in amino acid-associated
metabolites comparing EE and RE in SG was observed (Figure 3A,
cluster 4, 5, 6; Figure S4A, cluster 4, 5). A closer investigation revealed
a large-scale downregulation in response to RE only (Figure 3C),
amongst others the branched chain amino acids (BCAA) valine, leucine
and isoleucine, but notably not of ketoleucine, a product and indicator
of the ongoing BCAA catabolism. In contrast, the only BCAA down-
regulated in response to EE was valine (Figure 3D). This response
pattern and difference between EE and RE is less clear in EG, with all
three BCAAs being downregulated in response to EE (Figure S4C).
Together, this indicates a sharper, divergent distinction between forms
of acute exercise for amino acids (AA) in SG, whereas EG is more
optimized for fatty acid trafficking, reflecting exercise background-
specific metabolic specializations.

3.4.4. Transcription factor motif activity
To obtain a better understanding of the regulation of the observed
transcriptomic changes, we employed Motif Activity Response Analysis
(MARA), which pairs transcriptomics with gene-wise TF motif binding
site information [18e20]. By doing so, we were able to discover
additional exercise-response dynamics. Unlike DEG which peaks at 3h,
the most significantly changed TF motifs peaked at the 1h timepoint,
primarily increasing in activity (Supplement A, Table S4). Interestingly,
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Figure 3: Clustering and classification of metabolomics. (A) Clustering (mean � confidence interval) and classification of metabolites of endurance (EG) and strength group
(SG) in response to acute endurance (EE) and resistance exercise (RE). Numbers in donuts represent the cluster size. (B) Clustering of lipid-associated metabolites in EG in response
to EE and RE and (C) of amino acid-associated metabolites in SG in response to RE. (D) Analysis of carnitines in EG and amino acids in SG in response to acute exercise. Size and
color of dots represent effect size and direction. Black circles represent statistical significance compared to pre.
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some of these comparisons prominently feature HIF1A and MYFfamily.
HIF1A is a regulator of mitochondrial metabolism and hypoxia-related
processes [55e57], with oxygen delivery to skeletal muscle being one
of the primary limiting factors of acute endurance performance [58].
HIF1A controls genes responsible for erythropoiesis and angiogenesis,
aimed at coping with and resolving the hypoxic condition [59], but itself
relies on a complex regulation involving degradation by the von Hippel-
Lindau protein and activation in hypoxic conditions [60,61]. The
MYFfamily motif controls the myogenic regulatory factors MYF5, MYF6,
MYOD1 and MYOG [62]. Comparing groups following RE, EG was less
likely to activate strength adaptation-associated motifs such as MYF-
family but was, amongst others, more likely than SG to activate the
HIF1A motif (Supplement A, Table S4). Surprisingly, while RE in EG lead
to the highest number of DEGs on transcriptomic level, EE induced a
higher number of changes on the TF motif level (Supplement A,
Table S4). This difference might be the consequence of a more
untargeted, somewhat “chaotic” response to an unfamiliar form of
exercise as opposed to a targeted activation of functionally connected
genes by specific TFs, and could explain both, transcriptomic and TF
level effects. As demonstrated by baseline differences, EG is
specialized in a markedly different regulatory direction compared to
both CG and SG, including a regulatory specialization with a more
pronounced stimulation of EE-associated TFs, such as HIF1A, and thus
exhibiting a narrower, but more intense stimulation of transcription as
indicated above in the functional cluster analysis (Figure 2C). The same
logic could also explain the somewhat blunted activity of the MYFfamily
motif following RE in EG compared with CG (Supplement A, Table S4).
HIF1A and MYFfamily motifs both show an exercise-specific response
in a direct comparison of EE and RE (Figure S6A). Importantly, they
seem to only be affected in their specialized activity following EE
(HIF1A motif) and RE (MYFfamily motif), but not following the other
form of exercise (Figure S6B). Furthermore, we show the CREB1 motif,
which regulates PPARGC1A, a master regulator of mitochondrial
biogenesis [63,64], to be stimulated by both EE and RE (Figure S4B).
Additionally, we identified the primary genes driving the activity of each
motif using correlation analysis (“reverse mapping”), revealing
candidate genes highly relevant to their respective motif (Figure S6C),
many of which playing a substantial role in the regulatory response to
acute exercise: HES1 (associated with HIF1A motif), involved in skeletal
muscle differentiation [65], CLIC4 (MYFfamily motif), having a role in
angiogenesis [66], TRIM63, a potential regulator of muscle mass [67]
and CBFB (both CREB1 motif), a negative regulator of MyoD [68]. Using
tissue- and cancer-specific biological network analysis (TCSBN) we
further confirmed these candidate genes to be functionally connected
rather than a random collection of genes (Figure S6D).

3.5. Correlation between physiological, histological and molecular
features and effects
Molecular processes in skeletal muscle stimulated by acute exercise
largely reflect the physical and biochemical requirements of the per-
formance output and the ability of the individual to meet these. To
better understand the influence of the individual performance char-
acteristics on skeletal muscle molecular changes at different omics
levels following acute exercise, regression analysis was performed
between transcripts, metabolites and TFs and _VO2peak (EE) and peak
knee torque (RE). Between 16 and 30 % (mean 21 %) of analytes
correlated significantly (p < 0.05) with _VO2peak across all timepoints
following EE (Figure 4A). In contrast, 0e20 % (mean 7 %) of analytes
correlated with peak leg torque following RE. Endurance training has
extensive influence on acute mitochondrial activity and ATP production,
and subsequently contributes to _VO2peak [69]. RE, on the other hand,

stimulates acute molecular mechanisms that will, following a
sequence of hypertrophic processes over time, increase peak torque
and thus contractile potential. Such a process involves molecular
mechanisms such as immune system activation, hypertrophic pro-
cesses and angiogenesis that take place up to several days following
the acute bout [70,71]. To identify genes highly relevant to EE and RE
performance via their proxies _VO2peak and peak torque, acute gene
expression was individually summarized as area under the curve (AUC)
over time using trapezoid integration. To further deepen the analysis,
significantly correlating genes from the present study were retained
only if they were also found to be significantly regulated by acute
exercise in both of two large meta-analyses by Amar et al. and Pillon
et al. [43,72] (Figure 4B). The present analysis showed a stronger
correlation between performance characteristics and genes following
RE (up to r ¼ 0.73) than following EE (up to r ¼ �0.58; Figure 4B).
Notably, PPARGC1A and myogenesis regulating gene MYF6 in RE were
identified in this analysis (Figure 4B). While PPARGC1A has primarily
been associated with endurance exercise [73e75], there is some
support for a role in resistance exercise, regulating skeletal muscle
hypertrophy [76,77]. Muscle regeneration and hypertrophy rely on a
choreography of myogenic factors to guide a satellite cell from
quiescence to differentiation, with MYF6 activity required only during
the terminal differentiation process [78]. It is possible that this negative
correlation is an indication of the expression timing of the MYF6 gene.
Previous results placed MYF6 activity between 1 and 8 h following
acute exercise [79], a range included in the present study. Alterna-
tively, this could be explained by a lower stimulation of pro-
hypertrophic processes in the already hypertrophy-adapted SG [80].
Next, we used the identified most highly correlating “top genes” in an
attempt to explain inter-individual variance in _VO2peak and peak tor-
que. Surprisingly, results show that as few as 5 transcripts can explain
41 % of the variance of _VO2peak and 4 transcripts 68 % of peak torque
variability (Figure 4C). Additionally, to get a better understanding of the
processes connected to the identified correlating genes, GSEA was
performed for all genes that correlated significantly with peak torque or
_VO2peak. Surprisingly, results show a strong positive enrichment of
TCA-cycle, cellular respiration and ribosome-related terms in
connection to the ability to produce high peak torque such as SG.
Enrichment of genes correlating with high _VO2peak was rather focused
on receptor binding, transcriptional regulation, the electron transfer
chain as well as actin binding (Figure 4D).

3.6. Multi-omics molecular clustering
To obtain a deeper understanding of the relations between -omics data
and individual analytes, transcripts, metabolites, clinical and histo-
logical data and predicted TF motifs were used for network integration
and cluster analysis at baseline (Figure 5) and in response to acute
exercise (Figure 5, Figure 6). This network was then used to determine
physiological parameter correlations with individual analytes, for
cluster identification and functional annotation. The generated network
can be interactively accessed and downloaded for cytoscape via
https://bit.ly/iNetModels_CrossEX (Multi-omics network / Study-
specific Networks / crossEX (Reitzner et al., 2024).

3.6.1. Omics-network at baseline
To analyze the network at baseline we selected physiological,
biochemical and histological parameters such as leg strength, CS
activity and fiber type composition and analyzed their inter-network
connections with the transcriptome, metabolome and TFs. Results
show a high number of metabolites correlating with the proportion of
type 1 (T1%) and 2 fibers (T2%). In particular, the amino acid group
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correlated positively with T2% and the fatty acid group of metabolites
correlated with T1% (Figure 5A). CS activity was positively correlated
primarily with PC- and PE-compounds and four carnitine derivatives,
and negatively correlated with amino acids, nucleosides and propio-
nylcarnitine. Such an increased presence of endogenous muscle fatty
acids [81], associated with an increase in beta-oxidative capacity has

previously been demonstrated [82,83], representing a shift to a more
fatty-acid based energy metabolism, enabling EG to utilize the large
lipid reserves of the body during long endurance efforts lasting beyond
carbohydrate-based reserves. Leg strength showed substantially less
correlation to the metabolome at rest, however with the exception
BCAAs valine and L-isoleucine. BCAAs are capable of activating

Figure 4: Correlation of physiological parameters with molecular analytes. (A) Proportion of analyte response to EE and RE based on area under curve (AUC) significantly
correlating to baseline _VO2peak and peak torque respectively. Total number of analytes each in legend parenthesis. (B) Top and bottom 10 genes correlating with _VO2peak and
peak torque; top 3 genes shown individually. (C) Modelling of top genes explaining variation of _VO2peak and peak torque. (D) Gene set enrichment analysis of genes (expressed as
normalized enrichment score, NES) sorted by correlation for _VO2peak and peak torque.
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Figure 5: Omics-network overview and highlights. (A) Baseline -omics network showing the up to top 10 correlating genes for each physiological variable and all correlating
transcription factor motifs and metabolites. (B) Overview over the acute -omics network with functional annotations of the three main clusters. (C) Distribution of analytes within the
individual clusters from C. (D) Network of the top 10 % of metabolites, transcription factor motifs and physiological variables from each cluster. Edge colors represent direction and
strength of connections. Red ¼ positive, blue ¼ negative. (E) Top 10 genes from each cluster, edges follow the same logic as in D. (fill colors in D and E represent cluster identity
as in B; *: FDR<0.01 for Spearman correlation).
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mTORC1 and to stimulate muscle protein synthesis [84], a key process
for muscle hypertrophy, but are also relevant to muscle regeneration
from acute exercise [85e87]. In the transcriptome, results showed a
large negative correlation between the expression of genes and pa-
rameters associated with EG (CS activity and T1%), while gene
expression was largely positively correlated with parameters associ-
ated with SG (leg strength, myonuclear number and T2%) (Figure 5A).
It is not unlikely that this, to a large degree, can be explained by the
increased at-rest potential capacity of RNA synthesis in SG through the
observed higher proportion of myonuclei per muscle fiber (Table 1).

One notable exception to the general trend of negative correlation in EG
was TPM3, which was positively correlated with a greater T1% and
previously reported as involved in the calcium-dependent regulation of
slow-twitch skeletal muscle fiber, significantly contributing to their
contractile force [88]. For TF motifs we observed the same negative
trend of most notably the CREB1 motif correlation with T1%, but an
increased motif activity with T2% (Figure 5A). CREB1 mediates
PPARGC1A activity, indicating a potential blunted activity in subjects
with high T1% - endurance athletes with already highly adapted
mitochondrial machineries.

Figure 6: Multi-omics network of acute exercise. Multi-omics network of acute exercise showing genes, metabolites and transcription factor motifs significantly changed with
acute exercise and positive or negative connection to selected physiological variables grouped by form of acute exercise and subject groups untrained control, and endurance and
strength athletes with >15 years of training history.
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3.6.2. Omics-network of the acute exercise response
To better define the structure of the acute network we created, we
performed community detection analysis using Leiden clustering al-
gorithm [89]. We identified three main clusters after maximizing the
modularity score of all types of analytes (Figure 5B), providing a more
comprehensive understanding of the general processes taking place in
our created network. Results showed the biggest cluster (cluster 0) to
be associated with RNA and protein metabolism, FoxO, mTOR and
AMPK signaling, the TCA cycle and fatty acid degradation. In animal
models, FoxO signaling has previously been shown to improve glucose
and lipid metabolic control via gluconeogenic enzymes [90e93] and
lipase activity [90], consequently increasing metabolic control.
Furthermore, it has been implicated in the process of muscle mass
maintenance and in controlling the myogenic factors in humans,
extensively reviewed by Gross et al. [94]. Similarly, mTOR is a key
mediator of muscle protein synthesis [95,96] and is stimulated by
resistance exercise to a higher extent than by endurance exercise [97].
AMPK is a metabolic master switch, downregulating anabolic-, and
upregulating catabolic processes, as well as inducing mitochondrial
biogenesis [98,99]. Also, it is influenced by being inhibited via acute
exercise-reduced phosphocreatine [100], but also long-term via TFs
such as, GEF and MEF2 and the transcriptional coactivator PPARGC1A
[101]. In combination with the other functions of cluster 0, these key
regulatory axes can dictate metabolic status and trajectory in skeletal
muscle. Cluster 0 was negatively correlated to cluster 1, which was
associated with mitochondrial and ATP-related processes, oxidative
phosphorylation and insulin-, MAPK-, glucagon- and HIF-1 signaling.
Again, energy metabolism is central to this cluster, with anabolic,
catabolic and amphibolic elements, such as MAPK which acts via
targets such as PPARGC1A, ATF2 and CREB [102]. In addition to the
above-mentioned systemic role of HIF-1A, locally it can indicate
increased hypoxia as a consequence of increased oxygen-consuming
ATP provision [103]. Both these clusters were positively correlated to
cluster 2, associated with RNA transport and translation into proteins.
Due to the overrepresentation of transcriptomic analytes (Figure 5C),
analytes with the highest degree of connection are shown separated
into top 10 % TFs and metabolites (Figure 5D), and top 10 transcripts
(Figure 5E). Here, metabolites of cluster 2 showed a higher degree of
centrality, supporting cluster 2’s central role in driving protein trans-
lation for pathways of both the other clusters. Furthermore, on indi-
vidual analyte level, reiterating the most central pathways of cluster 1
in Figure 5B, six of the top 10 genes (SLC25A11, NUDT8, LDHD,
ATP5F1D, CYC1, ETFB) of cluster 1 are mitochondrial protein-coding
genes that are part of the electron transport chain or the TCA cycle.
To contextualize the acute exercise network with measures of per-
formance, we selected EG- and SG-representative parameters such as
CS activity, leg strength and T1% and T2%. Then we selected only
analytes (transcripts, metabolites, TFs) that were significantly corre-
lated with these parameters, filtered the resulting network with only
analytes that were significantly changed with acute exercise and
grouped them by acute exercise and subject group. In Figure 6, genes
that are both significantly affected by training background and acute
exercise, reinforcing their high relevance for exercise training, are
visualized. Most analytes were connected to CS activity or T2%, the
two physiological parameters with the highest degree of centrality. EG
showed to be the most affected group, specifically in the type of ex-
ercise they were not used to (RE). In a functional analysis using gene
ontology in EG, RE exclusively stimulated genes significantly associ-
ated with anatomical structure formation involved in morphogenesis
and the response to hormones. Most notable were previously
mentioned MYF6, CITED2, an inhibitor of HIF1A signaling and

modulator of PPARGC1A [104e106], and PDK4, a mitochondrial
protein that redirects the metabolic flux from glycolysis to fat meta-
bolism [107]. This high number of RE responsive genes in EG
compared to SG suggest a higher potential transcriptomic stimulation
potential in response to the form of exercise they are not used to.
Furthermore, the RE-stimulated transcripts in EG were primarily
associated with CS activity rather than RE-related performance pa-
rameters such as T2%. This suggests a fundamentally different mo-
lecular response when performing RE in endurance trained compared
to strength trained individuals. The 5 identified core genes responsive
to both EE and RE in all three groups were transcription factor and
growth factor-related genes, one of which, AMATS1 has been shown
to interact with the growth factor VEGFA [108], suggesting a common,
exercise-independent growth and TF signaling program.

4. DISCUSSION

In a highly controlled human exercise intervention study, multi-omics
network integration analysis of the response to acute endurance and
resistance exercise revealed distinct differences between the two
exercise types. We also found clear differences in the acute exercise
molecular responses between long-term high-level athletes, particu-
larly endurance athletes, and control subjects with an exercise-specific
specialization of molecular mechanisms. Specifically, we show that
endurance athletes increase their proficiency in the fatty acid meta-
bolism, increasing the abundance of carnitine-derivate metabolites,
and uniquely down-regulate genes related to mitochondria, tran-
scription and ribosomes, while strength athletes change the dynamics
of their amino acid metabolism, increase the abundance of unsatu-
rated phospholipid metabolites but on transcriptional level stay closer
to control subjects than endurance athletes do. Additionally, results
suggest a “transcriptional specialization effect” by transcriptional
narrowing and intensification depending on the type of exercise
training performed. This is complemented by altered transcription
factor activity, particularly of HIF1A and MYF-family members.

4.1. Training-background specific adaptations of energy
metabolism
On metabolic level, carnitines, chaperone molecules of beta-oxidation,
and fatty acids of different lengths bound to these carnitines were
enriched in EG, while in SG PCs and PEs were enriched, contributing to
membrane fluidity and dynamics of, amongst others, GLUT4, improving
glucose uptake potential. A key adaptation to exercise training lies in the
way ATP is produced, which in the endurance group (EG) was reflected
in the transcriptomic enrichment of mitochondrial and energy metabolic
pathways at baseline compared to both the other groups. While it has to
be kept in mind that to a certain level genetic predetermination effects
can play a role in such adaptational potential, those findings are likely
strongly dependent on a higher CS activity and mitochondrial volume.
Such metabolic adaptations reflect an improvement of the major energy
metabolic systems e with beta-oxidation improvements in EG and
glucose metabolism improvements in SG. Unexpectedly, the acute
exercise response revealed a steep downregulation of both energy
metabolic pathways and transcriptomics-based metabolic flux in EG
only. A sharp immediate decrease in energy metabolic pathways upon
cessation of acute exercise suggests a tight regulatory control and a
focus on providing energy to exercise tasks only. In agreement with this,
previous studies have shown EG adaptation to largely lie in energy
metabolic optimization, providing a high flux of ATP over sessions of
extended exercise [109]. This notion is additionally supported by EG’s
and SG’s metabolic response to EE and RE, respectively. Specifically,
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emphasizing carnitine metabolism in endurance athletes performing EE
and AA metabolism in resistance-trained athletes performing RE sug-
gests a highly specific metabolic specialization to the familiar form of
exercise: Since we show that carnitine-derivatives in EG are largely
upregulated following EE, and largely downregulated following RE, a
distinction not found in CG and SG, and that AAs are primarily down-
regulated in SG performing RE, but not following EE, this subsequently
allows for physical performance beyond the levels of untrained in-
dividuals. One example of the ad-hoc upregulation of energy flux
common across all groups is the metabolite sorbitol, aiding glucose
uptake into the cell, which we, for the first time in humans, report to be
upregulated in response to EE and RE.
Our integrated network analysis revealed further evidence highlighting
the core role of an exercise-adjusted energy metabolism. Results show
it to be central player in both forms of acute exercise with the citrate
cycle, FA and protein metabolism, and insulin and glucagon signaling
prominently represented in cluster annotations (Figure 5B). That
carnitine metabolites correlate with high aerobic capacity, a proxy for
endurance performance, and amino acid metabolites correlate with
strength parameters reflect substantial energy metabolism-related
group differences, observed in the baseline network. Particularly, one
of the genes exclusively regulated in EG in response to RE was PDK4, a
gene responsible for orchestrating metabolic flux, further reinforcing the
notion of the EG specialization towards optimization of ATP production.
Together, our findings demonstrate background-specific metabolic
adaptation, resulting in increased energy metabolic control as a
consequence of prolonged, in our study >15 years, of exercise-form
specific training, adding to our understanding of high-level athlete
adaptations and underlining the substantial uniqueness of EG.

4.2. Adaptational potential is retained in highly specialized athletes
Several findings in this current study support the notion of a retained
high potential for resistance exercise adaptation in EG compared to SG:
In the created acute network we showed high numbers of genes
exclusively regulated in EG in response to RE which are highly relevant
for RE-specific adaptation processes. Apart from the above mentioned
PDK4 it also included MYF6 and CITED2, regulating hypertrophy and
angiogenesis (Figure 6). Additionally, all groups significantly increased
HIF1A and MYFfamily TF activity in response to EE and RE, respectively.
This is noteworthy because both of their gene targets are early activated
in the regulatory cascade of exercise-specific adaptation [61,62].
Beyond this, following an acute bout of exercise they are not familiar
with, both athlete groups retain a higher number of DEGs. Additionally,
regulation of EE and RE follows an exercise type-specific pattern, with
an increase in HIF1A and MYFfamily TF motif activity respectively,
despite the above-mentioned group-specific specializations. This in-
dicates that form of acute exercise rather than the training history is the
largest determinant of the individual exercise session response. These
notions are supported by indications from previous publications: Exer-
cise-naïve individuals have been shown to exhibit a prolonged elevation
of muscle protein synthesis following a bout of acute resistance exer-
cise [110]. It has also been shown that previous resistance exercise
experience increasingly protects against muscle damage from subse-
quent bouts [80], laying the foundation for the idea of a retainment of
adaptational potential even in highly specialized, though RE-naïve EG.

4.3. Long-term training induces molecular specialization by
transcriptional amplification and narrowing
Gene clusters summary response was substantially stronger expres-
sion (higher fold-change) in the familiar form of exercise, however

following the same general response shape (Figure 2C). However, at
the 3h timepoint, we found fewer DEGs in athletes performing their
familiar form of exercise compared to their exercise-naïve peers
(Figure 1C). While it might be tempting to accredit this to a simple
blunting of gene expression effect, together with the abovementioned
increase in the response amplitude, alternatively this can be accredited
to an optimized response in the respective experienced athletes.
Following acute exercise, DEGs increased from post to the 3h timepoint
and were increasingly dominated by regeneration-related pathways,
representing a commonly observed optimization of regeneration from
acute exercise with long-term training [111]. However, we showed the
gene clusters in response to EE and RE to be strongly associated with
more adaptational pathways such as transcriptional regulation and
translation, and muscle filament-related processes. Additionally, only
RE, not EE, was associated with myoblast differentiation, growth, and
morphogenesis. Taken together, these observations suggest the dif-
ference between subject groups is based on the degree of gene
activation rather than number of DEGs. In agreement with the pre-
sented results, it has previously been indicated that muscle memory
effects are mediated by modification of the translational capacity, and
thus potential amplitude of protein expression in the context of acute
exercise [112]. Additional observations support the idea of an exercise-
specific trajectory of development from untrained to trained state via
degree of molecular and metabolic exercise-specific optimization: On
metabolomic level in EG, lipid-associated metabolites were reduced in
response to RE but not EE (Figure 3A). In SG however, RE largely
decreased amino acid-instead of lipid-associated metabolites, indi-
cating either a lower usage of lipids as a source of energy or altered
lipid synthesis dynamics in SG.

4.3.1. Performance diversity can be explained by small numbers of
genes
By correlating differential gene expression and physiological perfor-
mance parameters, we showed, that only 4 genes can explain 68 % of
the leg strength variation and 5 genes 42 % of _VO2peak. Interestingly,
GSEA analysis associated the RE-correlating genes with energy
metabolism and transcription and translation processes. Despite being
less studied, RE requires and results in substantial energy metabolic
perturbations [113]. Together, this might underline the importance of
further research into the resistance exercise-related energy meta-
bolism. On the other hand, the broad influence of _VO2peak results in a
higher number of significantly correlating genes, mainly associated
with transcription processes and their regulation. Leg strength corre-
lates stronger with individual genes as it is a closer representation of
local performance and thus more adequately representing local gene
expression, in particular energy metabolic pathways important for and
perturbed by acute exercise.

4.4. In-silico methods add to the understanding of complex data
Metabolic flux related to the citrate cycle and beta-oxidation showed to
be distinctively down-regulated in EG only following EE as analyzed by
genome-scale metabolic modelling (GEM), indicating EGs particularly
tight metabolic control over energy metabolic pathways as discussed
above. Additionally, we identified HES1, CLIC4 and TRIM63 as key
targets of HIF1A and MYFfamily TF motifs following EE and RE
respectively, demonstrating a robust form of exercise-specific gene
regulatory program independent of exercise background. These find-
ings demonstrate the ability of both these in-silico methods to enhance
the perspective on transcriptomic data by adding database-originating
layers of information.
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4.5. Limitations
While the criteria used to include subjects to this study were based on
both training history and performance phenotype, non-physiological
parameters such as social, cultural as well as genetic factors could
influence the observed molecular variations between groups. What we
show here is how individuals with high _VO2peak or leg strength and a
long history of training differ from each other and from untrained
controls on molecular level. The fact that all subjects in SG were
stronger than any of the subjects in the other groups and all subjects in
EG had higher _VO2peak do not necessarily mean that this was a
consequence of the conducted exercise training alone. Nevertheless,
high-volume and -intensity exercise training over 15 years leads to
significant adaptation in addition to any baseline untrained perfor-
mance level. While it can safely be assumed that a large fraction of the
molecular differences between groups are dependent on the very
different training regimens prior to study inclusion, the above-
mentioned parameters should be kept in mind when interpreting
molecular data in human exercise studies. Irrespective of such influ-
ence, the large effect of structured progressive training as performed
by the athletes in the present study provides a strong foundation for the
rationale to investigate baseline and acute post-exercise differential
omics analyses in human subjects.

5. CONCLUSIONS

Highly endurance trained athletes specialize in lipid-related energy
processes while resistance trained athletes change the way they utilize
AAs, a diverging development from the untrained state visible from
omics and network perspectives. In the process of doing so, for the
first time we identified the metabolite sorbitol as substantially upre-
gulated with acute exercise. Additionally, endurance athletes increase
the abundance of carnitine-derivate metabolites and strength athletes
the abundance of unsaturated phospholipid metabolites. We further
enhanced our analysis using GEM and MARA analysis, showing a
striking down-regulation of metabolic flux as a consequence of EGs
training-induced metabolic adaptation also reflected in the tran-
scriptomic results, and identifying the HIF1A and MYFfamily TF motif as
exclusive to EE and RE respectively, independent of exercise back-
ground. Together, these findings put forward the concept of a
numerically smaller but more intense stimulation of genes e a tran-
scriptional specialization - with long-term high-level training, a
metabolic specialization focused on the needs of the type of exercise
training performed, and a certain degree of transcription factor motif
specificity to the form of acute exercise, driven by particular sets of
exercise-responsive genes.
Multi-omics and large data approaches are increasingly used for
precision health and physical activity research. Here, we employed
such an approach to compute differences between high-level endur-
ance and strength athletes with at least 15 years of training history and
untrained individuals, showing major differences in energy metabolic
and amino acid-related pathways following acute exercise, and
providing a publicly available resource of transcriptomic, metabolomic
and regulomic data to be used for further investigations into the mo-
lecular biology of exercise.
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