3-1-1981

Innocuous Inoculum Or Perilous Parasite? Encouraging Genetic Research through Patent Grants: A Call for Regulation and Debate

James F. Brashear

Follow this and additional works at: https://digital.sandiego.edu/sdlr

Part of the Law Commons

Recommended Citation
Available at: https://digital.sandiego.edu/sdlr/vol18/iss2/4

This Comments is brought to you for free and open access by the Law School Journals at Digital USD. It has been accepted for inclusion in San Diego Law Review by an authorized editor of Digital USD. For more information, please contact digital@sandiego.edu.
Comments

INNOCUOUS INOCULUM OR PERILOUS PARASITE? ENCOURAGING GENETIC RESEARCH THROUGH PATENT GRANTS: A CALL FOR REGULATION AND DEBATE

This Comment examines the effect of the United States Supreme Court's Diamond v. Chakrabarty decision on research in recombinant genetics. Although the Supreme Court has recited its inability to deny patents for microorganisms, the Comment suggests several grounds for refusing to extend patent protection to products of genetic research; not least among which is the danger such research poses to public health, morals, and well-being. Concluding that the Supreme Court's decision will encourage genetic research that is not currently subject to government safety guidelines, the Comment calls for congressional action to govern such research and suggests several regulatory schemes.

INTRODUCTION

The Constitution authorizes Congress "[t]o promote the Progress of Science and useful Arts, by securing for limited Times to Authors and Inventors the exclusive Right to their respective Writings and Discoveries." Accordingly, since 1790, Congress has enacted a number of Patent Acts.1 The 1952 Act2 gives the patent

1. U.S. Const. art. I, § 8, cl. 8. This clause has been interpreted to grant Congress the authority to establish a patent system. See Note, Ownership of Living Inventions—in re Bergy, 29 De Paul L. Rev. 215, 215 n.2 (1970).
2. For a discussion of patent acts from the earliest act of April 10, 1790, to the
holder a seventeen year monopoly, enabling the holder to prevent others from making, using or selling the invention.4

The primary purpose of the patent system has been stated to be the encouragement of technological advancement,5 rather than reward to the individual inventor.6 The system is foremost a device that serves the public by promoting inventions that benefit society in a tangible way. The system is not intended to promote "pure science" in and of itself, but only those "useful Arts" of practical value to the public.7 This excludes inventions which are "frivolous or injurious to the well-being, good policy, or morals of society."8

In Diamond v. Chakrabarty,9 the United States Supreme Court recognized genetic research potentially poses serious threats to society.10 Nevertheless, the Court refused to consider these dangers. Reasoning that the denial of patents for microorganisms is not likely to stop genetic research, the Court passed to Congress the burden of evaluating the competing values and interests involved in encouraging such research.11 Part I of this Comment examines the basis of the Supreme Court's decision. Part II discusses the propriety of extending patent grants for products of genetic research before establishing a regulatory system for such

last major act of 1952 see 1 A. Deller, DEller'S WALKER ON PATENTS 85-100 (2d ed. 1964).
5. Sinclair & Carroll Co. v. Interchemical Corp., 325 U.S. 327, 330-31 (1945). "The constitutionally stated purpose for enacting the patent system is the promotion of progress in the 'useful Arts' rather than in 'Science'. This was the conclusion of both houses of Congress in enacting the 1952 Patent Act The term 'useful Arts' now refers to 'technological arts.'" Note, OWNERSHIP OF LIVING INVENTIONS— IN RE BERGy, 29 De PAUL L. REV. 215, 215 n.2 (1979).
10. 100 S. Ct. at 2211.
11. 100 S. Ct. at 2211-12.
research and without the opportunity for public debate. Part III suggests possible congressional action to resolve any conflicting interests or policies.

The Framework

Statutory Limitations on Patentability

The subject matter for which a patent may be obtained is defined in 35 U.S.C. § 101.12 Because patents deal with inventions, which are by nature things previously unknown, the classes of patentable subject matter in section 101 were defined in very broad and general terms.13 Broad statutory requirements of “utility” and “statutory subject matter” are set out in section 101.14 A novelty determination is made under section 102.15 Section 103 codifies a judicially created nonobviousness limitation.16

12. 35 U.S.C. § 101 (1976) provides: “Whoever invents or discovers any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof, may obtain a patent therefor, subject to the conditions and requirements of this title.”

13. These statutory vagaries are occasionally a source of controversy, especially when, as in Chakrabarty, the Patent and Trademark Office (PTO) must determine for the first time that an invention constitutes statutory subject matter under § 101.

14. This section has been interpreted as stating three requirements for patentability: novelty, utility, and statutory subject matter. See Note, Ownership of Living Inventions—In re Bergy, 29 DE PAUL L. REV. 218 (1979). But see note 15 infra.

15. 35 U.S.C. § 102 (1976). The PTO has consistently applied § 102 in making rejections for lack of novelty. In re Bergy, 596 F.2d 952, 961 (C.C.P.A. 1979). In only two cases has the novelty rejection been made under § 101. See In re Bergstrom, 427 F.2d 1394 (C.C.P.A. 1970); In re Seaborg, 328 F.2d 996 (C.C.P.A. 1964). The inventor or discoveror must be the first to invent or discover the subject of the patent claim in substantially the same manner as it was invented. This determination requires a comparison with the “prior art.” “Prior art” is “[a]nything in tangible form that may properly be relied on by the Patent Office under the Patent Statutes and the Patent Office Rules of Practice in Patent Cases in support of rejection on matter of substance, not form, of a claim in a pending application for patent.” 5 A. DELLER, DELLER'S WALKER ON PATENTS 361 (2d ed. 1964) (emphasis in original). The determination of “prior art” by the courts is sometimes quite arbitrary. See note 75 and accompanying text infra.

16. 35 U.S.C. § 103 (1976). “Section 103 is a restatement of the rule invalidating patents for lack of invention or lack of patentable novelty which has long been recognized by the courts and other authorities but [had] not before been spelled out in the statute.” Zinn, Commentary on New Title 35, U.S. Code “Patents”, U.S. Code Cong. & Ad. News 2507, 2513 (1952). Under § 103, a patent will be allowed only “if the difference between the subject matter sought to be patented and the prior art [is] such that the subject matter as a whole [would not] have been obvious at the time the invention was made to a person ordinarily skilled in the art.” 35 U.S.C. § 103 (1976).
Section 112 of the Patent Act is particularly important in determining the patentability of living matter. That section requires a written description of the subject matter of the patent sufficiently detailed to enable one skilled in the art to make and use the invention.

Judicially Created Limitations on Patentability

The patent statutes' requirements do not provide the only limitations on patentability. While the courts have broadly construed the possible classes of patentable subject matter, they have also delineated certain subjects that fall outside the purview of patent coverage. For example, the subject of a patent claim is not patentable where its novelty consists merely of an arrangement of printed matter, a phenomenon of nature, methods of doing business, mental steps, or mathematical formulae or algorithms.

One frequently stated judicially created limitation is that a "product of nature" cannot be patented. This "product of nature" doctrine dates back at least to 1889. For seventy-five years or more the doctrine was invoked by both the Patent and Trade-
mark Office (PTO) and the courts to invalidate various patent claims without reference to specific statutory authority.26

A second, distinct, judicially created limitation is the "phenomenon of nature" doctrine.27 In order for an invention which embodies a phenomenon of nature to be patentable, its development must have required more than the ordinary skill of a person in the art or profession, given the state of the "prior art" when the subject matter was developed.28 Fundamental to the doctrine is the principle that the phenomena are neither "inventions" nor "discoveries" as defined by the Patent Act.29 All phenomena of nature, even if newly discovered, are treated as well-known aspects of the "prior art." Therefore, the phenomenon of nature doctrine precludes from patentability the phenomenon itself together with its fundamental applications.30

One commentator has noted that the courts have used the

26. See Behringer, Germ Warfare in the Patent Courts?, 31 Hastings L.J. 883, 895 n.86 (1980). The doctrine was first assumed to be an interpretation of § 101: that products of nature were not "new" and therefore not patentable subject matter under the section. See, e.g., Ex parte Siddiqui, 156 U.S.P.Q. (BNA) 426 (PTO Bd. App. 1966); Jacob, Patentability of Natural Products, 52 J. Pat. Off. Soc'Y 473 (1970). The C.C.P.A. rejected that analysis, contending that the product of nature doctrine was an expression of the novelty requirements of § 102. See Behringer, supra, at 896.

While certain decisions have professed to rely on the C.C.P.A.'s analysis, consideration of the facts suggest that the actual basis of the holdings lay elsewhere. Guttag, supra note 24, at 252. In view of the difficulties in applying the product of nature doctrine, some courts have rejected it, id. at 253; see, e.g., Merck & Co. v. Olin Mathieson Chem. Corp., 253 F.2d 156 (4th Cir. 1958), rev'd, 152 F. Supp. 690 (W.D. Va. 1957); Parke-Davis & Co. v. H.K. Mulford Co., 189 F. 95 (C.C.S.D.N.Y. 1911), aff'd in part, rev'd in part, 196 F. 496 (2d Cir. 1912), while others have attempted to establish a distinction based on purification of the naturally occurring material. See Guttag, supra note 24, at 254-55 for a discussion of the failure of the courts to reconcile the "product of nature" doctrine with the "purification of naturally occurring substance" treatments.

In recent cases, the C.C.P.A. has left open the question of whether a product of nature rejection is proper when the claimed material existed unrecognized in nature. See, e.g., In re Kratz, 201 U.S.P.Q. (BNA) 71 (C.C.P.A. 1979). The court noted that support for such a rejection can be found only in dicta, id. at 75, but held that "products of nature" may be patentable when the other requirements for patentability are met. See generally Note, Living Matter Found to be Patentable: In re Chakrabarty, 11 Conn. L. Rev. 311, 318-19 (1979).

27. Note, supra note 7, at 185-86. Exactly what constitutes a "phenomenon of nature" is unclear. See note 33 infra.

terms "phenomenon of nature," "laws of nature," "principles of nature," and "fundamental truths" synonymously. All of these terms are poorly defined. They are "vague and malleable terms infected with too much ambiguity and equivocation." Such ambiguity allows the courts great discretion in the application of the doctrine, and its use or rejection has at times been arbitrary or unexplained.

Despite the great discretion exercised by the courts in applying judicially created limitations, the courts have claimed that they do not expand the law; they merely interpret the congressional intent underlying the patent statute. One commentator has disputed this claim. He concludes that in determining patentable subject matter, the Court of Customs and Patent Appeals (C.C.P.A.) has tried to expand the scope of section 101 by "judicial fiat," not by statutory interpretation.

Microorganism Patent Claims in the Courts

The courts use a two-step analysis in affording patent protection to microorganisms; (1) the patent statutes allow patents for
claims to processes using microorganisms38 and to compositions containing microorganisms in admixture with inanimate matter,39 and (2) the patent statutes do not expressly bar microorganism patents.40 This analysis has been challenged on the grounds that there is a distinction between processes using living organisms or inoculums containing living organisms and the living organisms alone,41 and that the Plant Patent Act of 193042 and the Plant Variety Protection Act of 197043 indicate that no living organism is patentable outside of their provisions.44 These basic lines of reasoning were followed by the lower courts deciding \textit{In re}...
Bergy and In re Chakrabarty, the two cases preceding the Supreme Court's decision in Diamond v. Chakrabarty.

Dr. Ananda Chakrabarty, a microbiologist working for the General Electric Company, genetically engineered a new strain of bacteria of the genus Pseudomonas capable of degrading several hydrocarbon components of crude oil. Chakrabarty's patent application contained thirty-six claims, divisible into four groups. The Patent Office Examiner allowed the two groups that claimed a process incorporating the bacteria. He rejected, however, the two groups directed at the bacterium itself, or at an inoculum consisting essentially of the bacteria, on the ground that they claimed a nonpatentable product of nature.

For an explanation of the "gene splicing" process used by Dr. Chakrabarty see Baker & Clough, The Technological Uses and Methodology of Recombinant DNA, 51 S. CAL. L. REV. 1009 (1978).

Claims 27, 28, and 29 comprised a group directed at a process, or improvement in a process, of transferring plasmids from a donor to a recipient bacterium. Id. Claims 30, 31, 32, 35, and 36 comprised a group directed at an inoculated medium constituting a carrier material able to float on water (straw). Id. at 970-71.

The claims for the bacterium were Claims 7, 8, 9, 13, 17, and 21. Id. Those for the inoculum were Claims 21, 24, 25, and 26. Id. at 970.
On appeal, the PTO Board of Appeals erroneously interpreted the Examiner's rejection as stating two grounds for nonpatentability of the latter two groups of claims: that the organism was a product of nature and that the organism was a living thing. The Board reversed the Examiner on the first ground, but upheld the rejection on the second ground, reasoning that the Plant Patent Act excluded living organisms as patentable subject matter.

The Court of Customs and Patent Appeals (C.C.P.A.) reversed the Board and held that neither case law nor statutes could be interpreted to exclude living organisms from patentability under section 101. Chief Judge Markey, speaking for the C.C.P.A., observed: "No Congressional intent to limit patents to dead inventions lurks in the lacuna of the statute, and there is no grave or compelling circumstance requiring us to find it there." Judge Markey reasoned that the modified bacteria fell within the meaning of the terms "manufacture" or "composition of matter." He argued that there are but two sources of manufactures and compositions of matter: nature and man. Because the organism was a "manufacture" of man, Judge Markey concluded that it was within the statutory subject matter and to find otherwise would "defeat the fundamental purpose of the Constitution and of the Patent laws enacted thereunder."

While the PTO was appealing the C.C.P.A.'s Chakrabarty decision, the Supreme Court remanded the Bergy case to the C.C.P.A. for rehearing in light of Parker v. Flook.

In Light of Parker v. Flook

In Flook the applicant sought a patent for a method of updating

55. This ground, while justifiable in Bergy, was clearly inapplicable in this case as Chakrabarty's strain of the Pseudomonas bacterium presumably does not exist undiscovered in nature. The Board used analysis similar to that used in Bergy to conclude that the product of nature doctrine was inapplicable. In re Chakrabarty, 571 F.2d at 42.
56. Id. at 42.
57. Id. at 43.
58. Id. at 44.
59. Id.
60. 437 U.S. 584 (1978). Because Bergy and Chakrabarty both involved a determination of the patentability of a microorganism the C.C.P.A. vacated its Chakrabarty decision and consolidated the two cases for reargument. In re Bergy, 596 F.2d at 957.

271
alarm limits during catalytic conversion processes. The patent claims rested on a mathematical formula or algorithm. The Supreme Court rejected the patent claims, based on its earlier decision in Gottschalk v. Benson, that novel and useful mathematical formulae are merely ideas, and that ideas are not patentable subject matter.

In a frequently cited passage, the Flook Court argued in favor of judicial restraint and narrow construction of the patent statutes and case law. The language of that passage and the Court's action in summarily vacating and remanding Bergy for reconsideration in light of Flook seem to show some reluctance to extend patent protection to new technologies. Unfortunately, the Court issued no clear directives indicating what bearing Flook had on Bergy.

The C.C.P.A., considering Bergy on remand with Chakrabarty, decided the only thing the two cases had in common with Flook was that they all involved section 101. This is an overly narrow reading of the Flook opinion. It was a matter of some concern and confusion for the Flook Court that the applicant did not seek to patent the algorithm, but only one limited application of it. The Court stated that it is "clear that a process is not unpatent-

63. Id. at 72.
65. The Court said:
 It is our duty to construe the patent statutes as they now read, in light of our prior precedents, and we must proceed cautiously when we are asked to extend patent rights into areas wholly unforeseen by Congress.

 [W]e should not expand patent rights by overruling or modifying our prior cases construing the patent statutes, unless the argument for expansion of privilege is based on more than mere inference from ambiguous statutory language. We would require a clear and certain signal from Congress.

437 U.S. at 596 (quoting Deepsouth Packing Co. Inc. v. Laitram Corp., 406 U.S. 518, 531 (1972)).
68. In re Bergy, 596 F.2d 952 (C.C.P.A. 1979). The C.C.P.A. noted that while Flook (and Benson) concerned rejected process claims, the process claims in Bergy and Chakrabarty had been approved. The court also pointed out that the Flook holding had been limited to improved methods of calculation. Id. at 964.
69. See notes 71-73 and accompanying text infra. In a footnote the Court lamented "it is not entirely clear why a process claim is any more or less patentable because the specific end use contemplated is the only one for which the algorithm has any practical application." Parker v. Flock, 437 U.S. at 590 n.11. The Court also
able simply because it contains a law of nature or a mathematical algorithm." Nevertheless, "[t]he process itself, not merely the mathematical algorithm, must be new and useful."70

The applicant in Flook argued that his claims differed from those in Benson because he intended to use the formula in a limited way71 and did not seek to preempt the use of the algorithm.72 The Court rejected this distinction,73 citing O'Reilly v. Morse74 for the rule that a mathematical algorithm or a law of nature is always treated as though it were a familiar part of the prior art.75

The C.C.P.A. found that the Supreme Court's admonition in Flook calling for caution and restraint76 pertained only to "territorial" patent rights, not subject matter, and as such did not apply to Bergy or Chakrabarty.77 The C.C.P.A. therefore upheld the patent claims in both actions.78

Diamond v. Chakrabarty79

A divided Supreme Court affirmed the C.C.P.A.'s holding that
Chakrabarty's bacterium was patentable. The decision was based on two grounds. First, "in choosing such expansive terms as 'manufacture' and 'composition of matter,' modified by the comprehensive 'any,' Congress plainly contemplated the patent laws would be given wide scope;" and the courts should not read into the patent laws limitations that Congress has not expressed. Second, although "laws of nature, physical phenomenon, and abstract ideas have been held not patentable," Chakrabarty's claim speaks to none of these "but to a non-naturally occurring manufacture or composition of matter—a product of human ingenuity, 'having a distinctive name, character [and] use'" with "the potential for significant utility."

The Court rejected the two arguments raised by the Patent Office. The Court held the Plant Patent Act and Plant Variety Protection Act inapplicable to microorganism patent claims. It stressed the lack of ambiguity in the broad terms of the patent

80. Diamond v. Chakrabarty, 100 S. Ct. 2204 (1980) (5-4 decision; Brennan, J., White, J., Marshall, J., and Powell, J., dissenting). Regrettably, the Court did not have the opportunity to consider if Chakrabarty's claim was distinguishable from Bergy's claim to a biologically pure culture of an organism existing in nature, and it chose to decide the issue narrowly. The Court said: "Specifically, we must determine whether respondent's micro-organism constitutes a 'manufacture' or 'composition of matter' within the meaning of [§ 101]." (emphasis added). Id. at 2207.

81. Id. at 2207.
82. Id. at 2208.
83. Id. at 2209. The Court determined that the 1930 Act had been passed to overcome two obstacles to the patentability of plants. "The first was the belief that plants, even those artificially bred, were products of nature for purposes of the patent law." The Act recognized the distinction for purposes of patentability should be between products of nature and human-made inventions, not between living and inanimate things. Since Chakrabarty's bacterium was clearly not a product of "nature," the Court correctly determined that it was not unpatentable on that ground. Id. at 2210.

The second barrier overcome by the 1930 Act was the specificity necessitated by the written description requirement of 35 U.S.C. § 112 (1976). See note 17 and accompanying text supra. The Court noted that Congress relaxed the specificity required of Plant Patent claims but failed to explain why Chakrabarty's microorganism was not limited by the § 112 requirements. 100 S. Ct. at 2209. See Hearings on H.R. 11372 Before the House Committee on Patents, 71 Cong., 2d Sess., § 4, 7 (1930) (memorandum of Patent Commissioner Robertson). See notes 110-11 and accompanying text infra.

85. The PTO had suggested that, due to the ambiguity of the patent statutes,
Comment
SAN DIEGO LAW REVIEW

statutes and decided that microorganisms are statutory subject matter. When challenged by its own language in *Flook*, that the courts must proceed cautiously when asked to extend patent rights into areas wholly unforeseen by Congress, the Court restricted *Flook* to claims involving "ideas" or "phenomena of nature."

In an attempt to buttress its argument, the Patent Office pointed out the serious hazards inherent in genetic research. The PTO asked the Court to weigh the hazards to the public when considering patentability of microorganisms under section 101. Microorganisms were not patentable until Congress expressly authorized such protection. Although the Supreme Court considered the ambiguity of § 101, it failed to consider the ambiguity of the Plant Patent Acts as they relate to § 101. In its discussion of the 1970 Act, the Court said that the legislative history gave no guidance as to its applicability to microorganisms: "[I]t may simply reflect congressional agreement with the result... [in] *In re Arzberger...* or it may reflect the fact that prior to 1970 the Patent Office had issued patents for bacteria under § 101." 100 S. Ct. at 2210. (In *In re Arzberger*, 112 F.2d 834 (C.C.P.A. 1940), the C.C.P.A. had determined that the congressional intent underlying the Plant Patent laws was not to include bacteria as patentable subject matter.) Despite this ambiguity the Court refused to await congressional guidance. See, e.g., *Guttag*, supra note 24, at 263, 270; *Note, The Patentability of Living Organisms Under 35 U.S.C. § 101: Parker v. Bergy (Parker v. Chakrabarty)*, 15 *NEW ENG. L. REV.* 379, 401 (1980); *Note, supra* note 7, at 193.

Judge Miller in *Bergy* pointed out that, under *Parker v. Flook*, 437 U.S. 584 (1978), the courts must defer interpretation of patent law in favor of Congress if a basis for substantial doubt exists as to congressional intent regarding the statutory language. He contended the Plant Patent Act provided a substantial basis of doubt as to microorganism patents, and he called on Congress to act to define the law in this area. *In re Bergy*, 596 F.2d 952, 999 (C.C.P.A. 1979) (Miller, J., dissenting).

The Court pointed out that broad language is not necessarily ambiguous, and the patent statute cannot be restricted to specific applications foreseen by the legislators as the broad language was adopted principally because patentable inventions are frequently unforeseeable. *Diamond v. Chakrabarty*, 100 S. Ct. at 2211.

86. See note 65 supra.

87. See note 65 supra.

88. 100 S. Ct. at 2211.

89. *Id.* See notes 154-60 and accompanying text *infra*. The Court could have avoided this issue, at least in Chakrabarty's case, by acknowledging that the *Pseudomonas aeruginosa* bacterium used by Chakrabarty had been expressly excluded from the NIH Guidelines as non-hazardous. See NIH Guidelines, *supra* note 85, at 60,130.
The Supreme Court recognized the potential hazards but refused to consider them. The Court argued that denying patents for microorganisms is not likely to end genetic research and its risks because a great deal of research has already occurred without assurances of patentability. At best, said the Court, the research efforts will only be slowed or accelerated by the incentives of patentability. Thus limited, the Court had no alternative but to authorize Chakrabarty's patent.

In light of the risks inherent in genetic research and the Court's admitted institutional incompetence to determine the desirability of encouraging such research, the Court's decision to extend patent protection to products of genetic research was not compelled by statute or case law. The Court had several methods available to exclude the products of genetic engineering from patentability.

Statutory Ambiguity

The courts have two optional approaches to the determination of patentability. The first is to interpret the patent statutes freely, in view of their broad general language, unless there is an explicit limitation on patentability. The second is to determine whether the subject matter sought to be patented is clearly within the statutory intent. If it is not, the statute should be construed narrowly so as to exclude the claim.

When the Supreme Court summarily remanded Bergy for reconsideration in light of Flook, many thought the Court was adopting this cautious second approach. The C.C.P.A.'s decision in In re Arzberger would have supported the non-patentability

90. 100 S. Ct. at 2211-12.
91. Id. at 2212.
92. Id. at 2211-12. This Comment will treat the Court's decision as promulgating a broad rule of patentability of genetically engineered microorganisms despite the Court's having ostensibly limited the holding to the facts of the case.
93. See, e.g., Note, supra note 7, at 199. The author suggests that the courts' only duty in determining patentability is to decide whether the patent law excludes the subject matter. If ambiguities in the statutes confuse this determination, the courts should extend the patent and let Congress correct any errors or ambiguities.
94. Arguably, this is the position that was taken by the Supreme Court in Flook when it said that the courts "must proceed cautiously when... asked to extend patent rights into areas wholly unforeseen by Congress." Parker v. Flook, 437 U.S. 584, 596 (1978). "This policy rests on the principle that the courts should not expand patent protection by overruling or modifying prior cases construing the Patent Act without a clear and certain signal from Congress." Note, supra note 7, at 185. See Note, Patenting the Microorganism: In re Bergy, The First Step up the Chain of Life, 2 Geo. Mason U. L. Rev. 265, 278 (1978).
95. See notes 63-67 and accompanying text supra.
96. 112 F.2d 834 (C.C.P.A. 1940). See note 85 supra.
of microorganisms.97 The PTO’s patent grants to inventions involving microorganisms would not prevent the Court from so holding.98 Nevertheless, the Court adopted the first approach in \textit{Diamond v. Chakrabarty}, and refused to consider the “policy” issues despite the long history of judicial policy decisions on patentability in the form of judicially created limitations on patentability.99

The Court should have determined whether the subject matter sought to be patented, genetically engineered microorganisms, was clearly within the legislative intent of the patent statutes. Although the majority of the Court said the statutes were clear,100 four of the nine justices disagreed.101 Many commentators and members of the judiciary have argued that the statutes are ambiguous and the legislative intent unclear about the patentability of microorganisms.102 These critics have called for congressional clarification.103

Other Grounds for Rejecting the Microorganism Claim

Even accepting the Court’s conclusion that neither the patent statute nor the legislative intent is ambiguous,104 the Court was not without other means to reject the microorganism claims as unpatentable. Although the product of nature doctrine was not available, because Chakrabarty’s organism was man-made,105 the phenomenon of nature doctrine can be applied to the claim. Judge Baldwin, concurring in \textit{Bergy},106 described the phenomenon in \textit{Chakrabarty} as any biological metabolism of hydrocar-

97 \textit{Id.}
98 \textit{See} \textit{Diamond v. Chakrabarty}, 100 S. Ct. at 2210 n.9; \textit{Daus, Bond & Rose, Microbiological Plant Patents, 10 IDEA S}, 94 n.36 (1966) (citing several examples of patents issued for claims involving living microorganisms. Some of the claims are distinguishable as processes or inocula; none involve genetic engineering nor were any challenged in the courts on the issue presented in \textit{Chakrabarty}). \textit{See} notes 35 and 42 and accompanying text \textit{supra}.
99 \textit{See} notes 23-34 and accompanying text, \textit{supra}, showing that courts have denied patents to claims even in the absence of statutory authority or legislative intent so indicating.
100 \textit{Diamond v. Chakrabarty}, 100 S. Ct. 2204, 2211 (1980).
101 \textit{Id.} at 2213 (Brennan, J., White, J., Marshall, J., and Powell, J., dissenting).
102 \textit{See note 44 supra}.
103 \textit{See} note 79 \textit{supra}.
104 \textit{Diamond v. Chakrabarty}, 100 S. Ct. at 2212.
105 \textit{Id.} at 2208.
106 \textit{See} note 85 and accompanying text \textit{supra}. \textit{In re Bergy, 596 F.2d 952, 997 (C.C.P.A. 1979)} (Baldwin, J., concurring).
bons.107 Had the phenomenon been phrased as the ability of strains of the genus *Pseudomonas* to metabolize hydrocarbons, the doctrine could have been invoked, because the patent claim included naturally occurring strains of that genus.108

The Court might have seized the Plant Patent Act argument adopted by the *Chakrabarty* minority109 to exclude microorganisms from patentability.

The Court might also have rejected the application on the ground that it failed to meet the description requirements of section 112.110 Although Bergy's *Streptomyces vellosus* could have met the current requirement of a taxonomic description accompanying the deposit of a culture sample, it is doubtful that a more complex, recombined organism like Chakrabarty's *Pseudomonas* could do so.111 The Court could also have characterized the grant-

107. 100 S. Ct. at 2208. There is evidence Bergy's claim was withdrawn in anticipation that the Supreme Court might seize the phenomenon of nature doctrine to exclude it from patentability. Cooper, *Arzberger Under the Microscope: A Critical Reexamination of the Exclusion of Bacteria from Plant Patent Protection*, 7 RUTGERS J. COMP., TECH. & LAW 367, 379 n.9 (1980) (editor's postscript).

108. Judge Baldwin noted that Chakrabarty's claim would not preempt the biological metabolism of hydrocarbons. Nevertheless, Chakrabarty's Claims 21 and 30 claimed an inoculum and an inoculated medium containing bacterium of the genus *Pseudomonas* "at least some of which" are the genetically engineered organisms produced by Chakrabarty. *In re* Bergy, 596 F.2d at 986-97. Because a number of naturally occurring strains of the genus *Pseudomonas* can also degrade hydrocarbons and are claimed in the patent application, the patent claims a phenomenon of nature at least as to those organisms. See *Note*, supra note 7, at 195.

109. 100 S. Ct. at 2213.

110. See notes 17, 84, and accompanying text supra.

111. Although the PTO has no legislative mandate to require that a patent application for a microorganism be accompanied by a representative culture, the present regulations issued by the Patent Commission require that the subject microorganism be deposited in the Northern Regional Research Laboratories, along with a taxonomic description of the organism. Behr, *The Prescient Microbe or Where to Deposit a Foreign Body*, 57 J. PAT. OFF. Soc'y 28 (1975). See *In re Argoudelis*, 434 F.2d 1390 (C.C.P.A. 1970). It is doubtful that complex genetically recombined organisms, or multi-cellular cultures, can meet the taxonomic description requirement. In determining the patentability of a microorganism, the Patent Examiner must deal solely with the written description. Even with the deposit it is extremely difficult to tell if strains of the same species are the same or different. *Note*, *The Patentability of Living Organisms Under 35 U.S.C. § 101*: Parker v. Bergy (Parker v. Chakrabarty), 15 NEW ENG. L. REV. 379, 403 (1980); Robbins, *Patents for Microbiological Transformations—An International Problem*, 42 J. PAT. OFF. Soc'y 830, 833-34, 838 (1960).

It has been argued that the present deposit and taxonomic description standard does not adequately describe the patented subject matter so as to give the public the patent system is supposed to provide, Guttag, supra note 24, at 277, or to give adequate warning to infringers that they are violating the law. *Note*, *Patentability of Micro-Organisms: Legal Control of Life*, 47 U. MO. KAN. CTRY L. REV. 130, 142 (1978). The present "deposit" system may also lead to problems of storage. The microorganisms now on deposit are commonly occurring and easy to maintain. Nevertheless, as research advances and more complex recombined or symbiotic multi-organism cultures become increasingly common,
ing of patents for microorganisms as an expansion of patent rights into an area unforeseen by Congress. The Court could have refused to uphold the patent based on the language in Flook rather than limiting the holding to algorithms and phenomena of nature.

Preemption of Improvements

As previously noted, the Flook decision relied on O'Reilly v. Morse to deny a patent claim for a mathematical algorithm. The underlying rationale in Morse was not that the claim contained a "scientific principle," as the Bergy and Flook Courts professed, but that the claimed application of the principle was too broad. The Morse Court denied the patent claim because to have allowed it would have prohibited or impeded development in a useful art.

When Morse submitted his patent application for the telegraph, many scientists throughout the world were conducting experiments in the new and relatively unexplored field of electromagnetism. In his patent claim, Morse sought the exclusive right to every invention in which the motive power was electric current and the result was the marking of intelligible characters at a distance. The Supreme Court pointed out that if such a claim were allowed, a future inventor would be precluded from obtaining a patent even though his invention might be less complicated, less expensive in operation and construction, and more reliable. The Morse Court apparently feared that too broad a claim would discourage later research and improvements benefi-

the maintenance of these fastidious cultures may become more difficult and expensive. Note, Ownership of Living Inventions—In re Bergy, 29 De PAUL L. Rev. 215, 234-35 (1979). (The author also notes that higher forms of life may be unpatentable because of their inability to meet the requirement that the description be sufficient to allow one skilled in the art to make and use the invention. Id. at 235.) See also In re Bergy, 596 F.2d at 997 n.7 (Baldwin, J., concurring) (noting the "inherent difficulty in complying with the enablement provisions of 35 U.S.C. § 112" as to more complex life forms).

112. See note 65 supra.

113. 100 S. Ct. at 2211.

114. See notes 73-75 and accompanying text supra.

116. In Claim 8 Morse stated: "I do not propose to limit myself to the specific machinery or parts of machinery described in the foregoing specification and claims; the essence of my invention being the use of the motive power of the electric or galvanic current" Id. at 112.
cial to the public.117 Thus, based on constitutional and legislative intent, the Court held that a patent confers on the inventor “the exclusive right to use the means specified to produce the result he describes, and nothing more.”118

The Court has granted patents, despite the inclusion of a scientific principle or mathematical algorithm when the claimed uses of a principle in a process are sufficiently limited.119 The Flook Court cited Mackay Radio & Telegraph Co. v. Radio Corp. of America120 for the proposition that Morse requires the process incorporating the algorithm be “new and useful.”121 Mackay, however, was not decided on the basis of novelty or usefulness of the invention.122 The Mackay Court based its decision on the fact that the application of the principle in the patent claim was a narrow one, and the claim was strictly construed.123 The fact the claimed invention may be new and useful has no bearing on whether it is stated too broadly.

The C.C.P.A., in dismissing Flook as inapplicable to Bergy and Chakrabarty, considered only one aspect of the rationale for the rejection of the patent claims in Flook. The court recognized that the Flook claims involved an unpatentable “principle,” but failed to consider the claims might be so overbroad and unspecific as to preempt future improvements.124

117. The Court was concerned that Morse, the earlier patent grantee, would be able to incorporate all of the new discoveries and developments without having to record a description with the patent office, thus depriving the public of the details. Id. at 113.
118. Id. at 119.
120. 306 U.S. 86 (1939).
122. The Mackay Court stated: “We assume, without deciding the point, that this advance was invention even though it was achieved by the logical application of a known scientific law to a familiar type of antenna.” 306 U.S. at 94.
123. The Court refused to accept the ruling of the court of appeals that Mackay's patent applied to antennas, using all lengths of wire and all angles, that embraced the patent's empirical formula. Where the later inventor specified exact angles and lengths for wire, the prior patent grantee could not establish infringement. Id.
124. See notes 127-34 and accompanying text infra for a discussion of possible preemption of improvements or discoveries in the field due to the Chakrabarty patent grant. Judge Baldwin in his concurring opinion alludes to this preemption problem but restricts the discussion to “natural phenomenon” and “scientific principles,” joining the court on the ground that a bacterium is not a “principle” and that Bergy and Chakrabarty did not seek to wholly preempt the use of the “phenomenon.” In re Bergy, 596 F.2d 992, 998, 999, 997 (C.C.P.A. 1979) (Baldwin, J., con-
A patent on a process or manufacture employing a scientific principle or mathematical algorithm may be denied for two reasons. Under the "phenomenon of nature" doctrine, the principle or algorithm is not considered a discovery or invention, even when the formula has no other practical application. Alternatively, the court may find that the claim is overbroad and upholding the patent on the principle or algorithm would inhibit improvements in design, manufacture, or operation through other applications of the principle.

The Chakrabarty Court failed to fully consider the doctrine of preemption. Judge Baldwin in Bergy recognized that other strains of bacteria are capable of degrading hydrocarbons and he concluded that Chakrabarty's patent would not altogether preempt biological metabolism of hydrocarbons. He failed to note, however, that the patented organism might have other uses.

Given the infant state of the genetic engineering field and the lack of information on the functioning of the genetic coding process, it is unlikely that a researcher who develops a new strain of an organism will have sufficient prescience to anticipate all possible uses of his organism. An organism capable of producing one therapeutic drug might serendipitously be discovered to produce yet another drug in a different process. It is rare for the originally developed organism to be the most useful commercially. Later researchers often make substantial improvements. The original use may be trivial when compared to later derivations and improvements. Should the Court inhibit such later discoveries by granting a patent covering every process and use employing the microorganism? This would require researchers to obtain licenses in order to use the new organism. Such a policy would...
discourage research by others and slow or deter improvements in the manufacture and application of the organism.131 This is directly contrary to the mandate of the Constitution132 and to the holdings in Morse133 and Mackay.134

An inventor of a novel organism can be adequately protected without receiving a patent on the microorganism itself.135 The PTO has traditionally allowed patents on processes or inocula utilizing microorganisms.136 Allowing a patent on a process or specific use of the organism would protect the inventor’s discovery while allowing the microorganism to be used by the public.137 This policy would enhance the probability of later improvements in the patented process employing the organism, or in other distinct processes using it, by encouraging research by scientists who presumably could patent their discoveries if they met the novelty and nonobviousness requirements of sections 102 and 103.

In Chakrabarty’s case, the patent could have been limited to use of the microorganism to clean up oil spills. If further uses are discovered later, they too might be patentable. Currently, General Electric, as assignee of Chakrabarty’s patent,138 could decide subject matter for reasons wholly within his discretion, and he need not license anyone at all. 8 A. DELLER, DELLER’S WALKER ON PATENTS 214, 225 (2d ed. 1964). A solution to this may be compulsory licensing of microorganism patents. See Kitch, supra note 6, at 286-87.

132. See note 1 and accompanying text supra.

133. See notes 117-18 and accompanying text supra.

134. See note 123 and accompanying text supra.

137. But see Note, The Patentability of Living Organisms Under 35 U.S.C. § 101: In re Bergy, 58 Neb. L. Rev. 303, 328-29 (1978), which suggests that such a policy avoids the virtually impossible task of trying to duplicate the microorganism by requiring the microorganism to be placed on deposits the public may gain access to it, while the microorganism itself should be patentable so the developer will benefit from every use of the strain, even those that he did not contemplate. There are two problems with this view. First, it assumes the purpose of the patent system is to reward inventors rather than to promote the useful arts. See note 7 and accompanying text supra. Second, it fails to explain how the grant of a monopoly on a strain of bacterium will encourage others to conduct research for other possible uses of that strain.

138. See note 48 supra.
not to license other researchers and could forestall improvements or further uses of the bacteria. The Court should have rejected the Chakrabarty claim as overbroad or lacking in specificity.

The Supreme Court and Public Policy

Most importantly, the Supreme Court is not entirely incapable of acting on the policy considerations underlying the patentability of microorganisms developed by genetic engineering. In granting the patent on a product of genetic research the Court must have determined the hazards of such research were not substantial enough to warrant immediate protective action. This in itself was an "act" based on the constitutional policy of encouraging research in the useful arts as expressed through legislative intent.

The Court might as easily have based its decision on the constitutional policy of excluding from patentability subject matter that threatens injury to the well-being, good policy or morals of the society, and then refused to act without congressional guidance. Determinations of patentability have often been highly subjective, inconsistent with statutory intent, arbitrary, unexplained, based on judicially created limitations or on judicial fiat. Thus it is not unreasonable for the Court to refuse patent incentives for research that may be injurious to the public weal.

The Supreme Court has made a decision encouraging private party participation in recombinant DNA research. It is true that if Congress decides the statutes are being improperly applied it may change or clarify them. Until that time it is preferable that the courts adopt a narrow interpretation of the patent statutes in this area. In view of the uncertain legislative intent and the potential hazards of genetic research it seems imprudent to

139. But see Diamond v. Chakrabarty, 100 S. Ct. 2204, 2212 (1980), where the Court indicated it was unable to consider the policy arguments, either to brush aside the hazards of genetic research as groundless fears or to act on them.

140. Id.

141. Id. at 2206-07.

142. See note 8 and accompanying text supra.

143. Guttag, supra note 24, at 276-77.

144. See notes 31-34 supra.

145. See text accompanying notes 18-30 supra.

146. See note 37 and accompanying text supra.

147. See Time, March 9, 1981, at 52.

148. 100 S. Ct. 2204, 2211 (1980).
give patent incentives to such research by broadly construing the patent statutes. Regardless of the ultimate desirability of extending patent protection to products of genetic research, it would be wiser to provide Congress and the public with the opportunity to debate the issue and to create a system that regulates private research in recombinant genetics.

THE PROPRIETY OF PATENTING PRODUCTS OF GENETIC RESEARCH

Man's ability to alter his environment has developed far more rapidly than his ability to foresee with certainty the effects of his alterations. It is only recently that we have begun to appreciate the danger posed by unregulated modification of the world around us, and have created watchdog agencies whose task it is to warn us, and protect us, when technological "advances" present dangers unappreciated—or unrevealed—by their supporters. Such agencies unequipped with crystal balls and unable to read the future, are nonetheless charged with evaluating the effects of unprecedented environmental modifications, often made on a massive scale. Necessarily, they must deal with predictions and uncertainty, with developing evidence, with conflicting evidence, and, sometimes, with little or no evidence at all.

Environmental Risks

Critics of genetic research warn, that by creating new organisms, scientists are opening a pandora's box of evils which they are ill equipped to control. The doomsayers counsel it is often better "to bear those ills we have than to fly to others that we know not of." Recent developments in other technical fields may prove them right. Scientists themselves have recognized that many new products or technologies often have unexpected environmental effects. Pesticides and chemical waste have proven to be toxic to wildlife and man, gases used in spray cans deplete the earth's ozone layer, and many common substances are now known to cause cancer.

Nightmarish scenarios involving manmade organisms have been suggested. For example, an insulin producing bacterium might find its way into the human body, producing insulin

149. Id. at 2207, 2211.
151. 100 S. Ct. at 2211.
shock. While these flights of fancy may merely be amusing conjecture, more substantial threats have occurred. Dr. Chakrabarty himself transferred a gene that produces cellulase into *E. coli* bacteria. Dr. Chakrabarty destroyed the bug when warned that, should it be transmitted into the general population, countless people might be inflicted with chronic or fatal diarrhea. In 1971 Dr. Berg of Stanford University implanted a cancer causing virus into *E. coli* bacteria. He too destroyed the bacteria when other scientists alerted him to the danger to society should it escape. In 1980 Dr. Ian Kennedy of the University of California, San Diego, apparently unwittingly conducted experiments with a strain of *Simliki* forest virus, which had been banned from use in research by National Institutes of Health Guidelines, thinking it was a harmless strain of *sindibus* virus. Purely by good fortune the experiments were conducted in a secure laboratory and the organisms were later safely destroyed. The potential harm to the public in these cases was luckily averted, statistically, as research in this area increases, we may not continue to be so fortunate.

Recombinant DNA research has significant potential value to society and its substantial benefits should be noted. Apart from generally advancing human understanding of biological functions, microbiological research has developed organisms that can produce the fuel additive ethanol, penicillin, somastatin (used in treatment of hormonal disorders), thymosin alpha-1 (used to treat certain brain and lung cancers), insulin (used to control diabetes), and interferon (a potential cancer cure). Genetic research

156. An enzyme which breaks down the structural plant protein cellulose. Cellulose is indigestible by man and therefore gives bulk to feces.
157. *Escherichia coli* is the most common host organism used in recombinant DNA research. It inhabits the soil, water, and the intestines of all warm-blooded animals, including man.
has great promise of increasing the over-all health and well-being of society. Some scientists have suggested that the fears of the critics might be overblown. Thus it appears genetic engineering may be a Janus of sorts, presenting both spectacular potential for benefits to the public and foreboding possibilities of irreparable harm to public health and safety.

Philosophical Considerations

Recombinant DNA research also poses unique philosophical and moral questions. "The power to design life according to man's intellect is repugnant to many people; it assumes omniscience too close to God for many to accept. Recombinant research may present man with another forbidden fruit decision—whether to place the course of all evolution into our own hands."

It is the province of Congress to decide these essentially moral issues, to balance the needs of society with threats to public health, morals and well-being. Yet the Supreme Court, by allowing patentability of products of genetic research, has made these decisions while reciting its institutional incompetence to do so. The Court has noted "the grant or denial of patents on microorganisms is not likely to put an end to genetic research or to its attendant risks" since substantial research has already occurred in the absence of patent protection for researchers. The Court dismissed as inconsequential the fact that the determination of patentability may either accelerate or slow genetic research through manipulation of the patent incentives which encourage private participation in genetic research. It is precisely this uncontrolled, privately funded genetic research which calls for caution.

Unregulated Genetic Research

Until recently, much of the research in this field has been federally funded. The Supreme Court's *Diamond v. Chakrabarty* decision preceded an increase in awareness by private industry of the potential of genetic research. Several small genetic engineering

164. Id. at 98-99.

166. Id. at 2211-12.

167. Id. at 2212.
firms have appeared over the past four years, and now giant multi-national corporations with capital sufficient to fund major research projects are about to enter the field. While it may be true that recombinant DNA technology is not likely to achieve its full promise absent private financial and intellectual support, it is not clear that private industry participation in such a potentially dangerous field should be encouraged until adequate guidelines are formulated to regulate private genetic research. Congress has not enacted legislation to govern either private or publicly funded recombinant DNA research.

The Supreme Court's decision to afford patent protection to products of recombinant DNA research will provide a major incentive to the private development of new microorganisms. Private enterprises are motivated by profit. If competition exists, profit provides incentive for efficient resource allocation through increased output. But sole control of any scarce and unique resource makes for less output and higher prices for that resource. Patents create sole control of the patented resource. Where monopolistic control exists, the profit motive leads to trade restriction. A central goal of patent law is the resolution of this efficiency/trade restriction dilemma. It has been contended that patent protection is not essential for continuing the research of large corporations. While this may be true, the patentability of products of genetic research clearly will not discourage private corporate involvement in the field and does act to enhance profitability of such research.

The interface of the patentability of microorganisms, the encouragement of private genetic engineering, and the lack of effective guidelines to regulate recombinant DNA research is

169. TME, Oct. 20, 1980, at 72. Previously at least one of the small firms was sharing laboratory space and employees with federally funded research institutions governed by NIH Guidelines. Now these firms will be able to fund independent research.
complicated. Patents are awarded to the “first inventor,”175 a technical status nearly always accorded the first person to file the patent application.176 When technology brings an invention into the realm of possibility, the creative efforts of many scientists will likely be similarly directed.177 Because the researchers are aware of each other, and because the invention need not be commercially valuable in its initial version to be patentable, the patent system results in greater secrecy in the initial stages of development and in many hastily prepared applications which are rushed to the Patent Office to establish priority.178 It is not unreasonable to suppose that proper laboratory techniques and safety guidelines, voluntarily self-imposed, might be lost amid the frenetic confusion of the great race to file.

The National Institutes of Health (NIH) has promulgated genetic research guidelines under its informal rule-making authority.179 The NIH Guidelines, however, apply only to research conducted at, or sponsored by an institution receiving NIH support for that research.180 Even the safety of research conducted at NIH-sponsored institutions has been subjected to criticism.181 The NIH Guidelines depend for their effectiveness on the use of proper laboratory techniques, which may be lacking even in university research,182 and the only mechanism for enforcement consists of denial of grants by the NIH.183 The NIH’s role as both benefactor and policeman makes enforcement of the Guidelines more difficult still.184

Private industry has suggested it would voluntarily follow the NIH Guidelines.185 It is not required to do so, however, and there

175. See note 15 supra.
176. Kitch, supra note 6, at 269.
177. Id.
180. NIH Guidelines, supra note 85, at 60,123.
181. Berger, supra note 163.
182. Id. at 91 n.26. The incident involving Dr. Kennedy, for example, occurred at a NIH sponsored laboratory. See note 160 supra.
183. Hutt, supra note 179, at 1444.
184. The Atomic Energy Commission formerly had such a dual role, but Congress considered it improper and divided the duties between the Nuclear Regulatory Commission and the Energy Research and Development Administration. Berger, supra note 163, at 92.
185. Hutt, supra note 179, at 1441-42. In order to induce private industry compliance with NIH Guidelines, the Assistant Secretary of Commerce for Science and Technology requested that the PTO give special status to patent applications involving recombinant DNA when the applicant voluntarily followed the Guidelines. That status has been revoked pending further consideration. See Patent and Trademark Off., Recombinant DNA, Accelerated Processing of Patent Applications
are no indications that it would. In light of the lack of effective guidelines and the effect the *Chakrabarty* decision will have in encouraging private genetic research, Congress must act quickly to provide adequate protection to the public.

Congress Faced with a Dilemma

It is now up to Congress to weigh the merits of genetic research against the moral questions, health risks, environmental dangers, and systematic difficulties in affording patent incentives to private genetic research. While it may be true that encouraging genetic research is in the public interest, in reaching that decision, Congress is capable of making the in-depth investigation for which the courts are ill-equipped. Congress is faced with serious issues. Morally and ethically, ought society seek and use the means to control the genetic structures of living organisms, and potentially those of man? In view of the danger currently posed by unregulated, private genetic research, does the federal government wish to encourage such research by giving patent incentives; and if so, what can be done to mitigate the danger?

In balancing the potential benefits of recombinant DNA research with the potential hazards, the scientists have stressed the benefits. They denigrate the critics' warnings as being "a gruesome parade of horribles" with no basis in reality. Supporters of genetic research refute the philosophical issues by arguing that it would be unethical to forego the benefits. The scientists' position is based partly on reason, familiarity with the facts, and logical extrapolation, and partly on their faith in themselves to control their activities. What they fail to realize is that the determination to regulate genetic research may have less to do with

whether the dangers are actual or imagined than it has to do with how genetic research is perceived by the populace.

The public does not share the scientists' faith in themselves. Critics contend that holders of patents on genetic research would be able to play God; that patents for genetic engineering techniques create the potential for industrial control of the earth's gene pool; and that "ownership of life" may result in the upheaval of legal, social, and moral systems.191

The public has a legitimate democratic right to be informed of the nature of DNA research and its hazards in order to weigh the costs and benefits. The public should make the moral choice whether genetic research should be encouraged by government patent protection.192 In the long term, with increased familiarity, the public will come to appreciate the nature of genetic research and will be better able to deal with these issues rationally.193 Paradoxically, it appears that the freedom of the scientists to conduct research in areas such as genetic engineering, which may pose special dangers to society, is not likely to have the support of the public unless appropriate safeguards can be developed which temporarily limit that freedom.194

Patents for products of genetic research, upheld by the courts in the absence of a legislative mandate, may foreclose all chance for meaningful public education and participation in the policy decisions surrounding genetic engineering. Simultaneously, the drive for commercial application of such products will escalate with apparent government support.195 Public debates, demonstrations, and referenda concerning such matters as the dumping of chemical wastes and building of nuclear power plants indicate that the public desires democratic control over the technological decisions that may affect their lives.196

The moral and philosophical questions, as well as the hazards and benefits, of genetic research are vital issues which should be discussed in a legislative or public forum.197 It is for the people,
through their elected representatives, or by referendum, to decide if genetic research by private industry should be encouraged by patent incentives, if such research should first be subject to regulation, or if patents should be denied.198

\section*{Considerations for Congressional Action}

While Congress has not yet passed legislation governing recombinant DNA research, hearings have been held199 and numerous bills have been introduced200 in both houses of Congress.201 After \textit{Diamond v. Chakrabarty},202 private industry's participation in the genetic engineering field will be stimulated and inasmuch as private research is not covered by NIH guidelines, immediate congressional action is called for, either to formulate regulations or to remove certain patent incentives.203

The main obstacles to the passage of genetic research legislation have been concern about violating rights of researchers,204 and difficulties in drafting.205 The reaction of the scientific com-

\begin{footnotesize}
\begin{enumerate}
\item See id. at 2212.
\item See, e.g., S. 2234, 96th Cong., 2d Sess. (1980) (requires annual reports of recombinant DNA research by researchers; provides for public disclosure of research, except trade secret and commercial information for which disclosure is required only in the event of an imminent hazard to the public or environment); S. 1217, 95th Cong., 1st Sess. (1976) (amended 1977) (established presidential commission with authority to issue regulations and licenses for public and private recombinant DNA research and provided for severe penalties); S. 621, 95th Cong., 1st Sess. (1976) (provided HEW should enact guidelines regulating all genetic research; required strict liability for injuries resulting from such research.); H.R. 11,192, 95th Cong., 1st Sess. (1976) (extended NIH guidelines to encompass all genetic research).201
\item See Berger, \textit{supra} note 163, at 107.
\end{enumerate}
\end{footnotesize}
munity to suggestions for regulations inhibiting scientific research has been one of fear that genetic research might be overly restricted or even banned. The researchers are aghast that anyone would interfere with academic freedom and they assert a theoretical constitutional right to conduct scientific inquiries.

Minimizing Risks Through Regulation

While it is in the best interests of both the public and the scientific community to design legislation governing genetic research so as to minimize the impact on free scientific inquiry, this is not to say that regulation is unwarranted. The environmental hazards of recombinant DNA research are divisible into two categories. There is the "direct risk" of a "biohazard" involving the release of a pathogenic organism into the environment where it could infect plants and animals, causing disease or death, and there is the long-term or "indirect risk." The latter is a more speculative hazard that a recombination of DNA molecules across species lines, especially in higher life forms, would result in violation of natural barriers and cause an evolutionary disaster.

In the regulation of genetic research, an even greater distinction may be drawn between these risks. We may differentiate between what has, until recently, been predominantly "pure research" in recombinant DNA and research that is intended to

206. Id. at 101.
207. See generally Robertson, The Scientist's Right to Research: A Constitutional Analysis, 51 S. Cal. L. Rev. 1203, 1209-18 (1978). Although this topic is beyond the scope of this Comment, in summary, the author bases the proposed constitutional right to research on the right to liberty and privacy of the fourteenth amendment and the right of free speech and association of the first amendment. The author points out that the Supreme Court has never decided the issue. Id. at 1211.

Galileo and Darwin have been cited as examples of targets of illogical public reactions to new discoveries which contradict strongly held societal beliefs. B. Davis, Three Specters: Dangerous Products, Powers or Ideas, in GENETICS AND THE LAw II 7 (A. Milunsky ed. 1980). The comparison of the criticism of unrestrained genetic research to the attack on Galileo and Darwin is of little value. While Galileo merely observed the heavens and Darwin contemplated unchangeable evolutionary patterns, the modern genetic engineers seek to make changes in nature. Thus the freedom of inquiry which they are seeking is not merely the freedom to observe and record, or freedom with words; it is the freedom to modify organisms that may have environmental effects deleterious to us all. Cohen, Restriction of Research with Recombinant DNA: The Dangers of Inquiry and the Burden of Proof, 51 S. Cal. L. Rev. 1081, 1104 (1978). "Galileo is protected; Dr. Frankenstein is not." J. Robertson, The Scientist's Right to Research and the Legitimacy of Governmental Regulation, in GENETICS AND THE LAw II 36 (A. Milunsky ed. 1980).

produce a marketable organism or by-product.210 In the first instance, the value to the public of the “non-use-oriented” research is indirect and nonquantifiable. It consists of contributions to scientific knowledge and a greater understanding of the mechanics of biochemistry.211 Similarly, the risks to society in “non-use-oriented” research are indirect, and society may only be inadvertently affected.212

It is the “use-oriented” research that will be primarily affected by the patentability of microorganisms. Because the incentives of the patent system operate primarily on the businessman and only secondarily on the scientist,213 it is unlikely private industry will be interested in funding research projects that are not commercially exploitable. Thus, the patentability of microorganisms will promote private genetic research directed towards development of microorganisms for commercial introduction to the environment, or used in processes requiring much larger quantities than are needed in non-use-oriented research. Inasmuch as use-oriented research involves a greater likelihood of eventual exposure to the public, it warrants greater regulation.214

Constitutional Aspects

Arguably, there exists a constitutionally protected right to research.215 If that right is a fundamental right, any regulations affecting that right must satisfy the compelling state interest, substantial relation, and least restrictive alternative tests of enforceability.216 Protecting human life and health is a compelling

210 Berger, supra note 163.

211 Grobstein, supra note 209, at 1191.

212 Berger, supra note 163.

213 See note 7 supra.

214 Grobstein, supra note 209, at 1196. This is not to say that non-use-oriented research may not be regulated if it involves a “direct risk” of harm to the environment, but the greatest degree of danger exists in direct risks from use-oriented research. Id. at 1191.

216 Spece, A Purposive Analysis of Constitutional Standards of Judicial Review and a Practical Assessment of the Constitutionality of Regulating Recombinant DNA Research, 51 S. Cal. L. Rev. 1291, 1285 (1978). The author suggests that regulations of DNA research might be subjected to the rational relation or intermediate tests of scrutiny if the right to research is determined to be less than fundamental. If the regulation can pass the compelling state interest test, however, then a fortiori it can pass these other tests. Id. at 1332. See also note 207 supra.
state interest.217 The substantial relationship requirement will probably be interpreted to refer to both the probability and the degree of the physical danger that might be avoided by regulation. The probability and amount of harm will then be compared to the degree of intrusion on the rights of the researchers.218

The remaining element is the regulation be the least restrictive alternative.219 This requires that the regulation not create over-inclusive classifications to which the purpose of the enactment is not relevant, and minimize the intrusion on the rights of those to whom its purpose is relevant.220 While it appears clear that under the compelling state interest test an outright prohibition of recombinant DNA research would not be upheld,221 it is not certain exactly what regulations would be sustained. This is due to the lack of adequate information regarding the magnitude and probability of danger posed by recombinant DNA research as well as uncertainty about the extent of the researcher's rights.222 There is, however, a greater certainty of enforceability of regulations governing use-oriented research, where a direct risk of harm exists, than of regulations governing "pure" research.223

The problem lies in designing regulations which minimize intrusions on the right to research while adequately protecting society from the risks of research by private industry. There are several alternative approaches to congressional regulation of private research in recombinant DNA.224

\textbf{Direct Regulation}

First, Congress could draft legislation requiring compliance with express guidelines and providing penalties for non-compliance. While this alternative would discourage private research involving those organisms determined to be dangerous, it has the disadvantages of being overly rigid and of requiring inspection and enforcement for its effectiveness.225

Other alternatives are to apply the existing NIH Guidelines to

217 Id. at 1333. See Roe v. Wade, 410 U.S. 113 (1973).
218 Spece, supra note 216, at 1335.
219 Id. at 1340.
220 Id.
221 Id. at 1351. An outright prohibition might be upheld under the rational relation test. See note 228 infra.
222 Id.
223 Grobstein, supra note 209, at 1194.
224 See notes 202-05 and accompanying text, supra.
225 Overly technical language in the statute might be difficult for the courts and legislators to interpret, further diminishing the effectiveness of direct legislation. Berger, supra note 160, at 107.
private research, or to assign the task of designing and enforcing the regulations to an independent agency. While these methods have the advantage of increased flexibility, the inspection and enforcement problems remain. It is relatively certain, however, that guidelines such as the NIH Guidelines could satisfy the strict scrutiny standard of review.

Diminishing Patent Incentives

Another approach is to diminish the incentives for private genetic research, or alternatively, to encourage voluntary compliance with the NIH Guidelines by manipulations of the patent protection. For example, Congress could expressly limit or enumerate the types of organisms which would be patentable, a method similar to that used in the Plant Patent Act. The regulation might provide that only organisms exempted from the NIH Guidelines could be patented.

Prohibiting patents for inventions in hazardous fields is not a novel idea. Under the 1954 Atomic Energy Act patents are prohibited for certain inventions related to nuclear research. A similar statute could minimize the potential hazards of private genetic research by encouraging research only with the less dangerous organisms. This approach has the advantage of being only a minor intrusion on the right to research, but the disadvantage of

226. See, e.g., H.R. 11,192, supra note 200.
227. This method was used to assign to the Environmental Protection Agency the task of drafting the Federal Toxic Substances Control Act. See 15 U.S.C.A. §§ 2601-2629 (West Supp. 1980).
228. Spece, supra note 216, at 1349. It has been noted that the Supreme Court has held environmental hazards are a matter of economic regulation and not individual liberty. Thus minimal scrutiny is likely to be applied to such regulations. R. Stewart, Legal Regulation of Environmental Risk, in GENETICS AND THE LAW I, 404 (A. Milunsky ed. 1980) (citing Duke Power Co. v. Carolina Environmental Study Group, 438 U.S. 59 (1978)).
229. For example, patents could be limited to microorganisms derived from species not banned by the NIH Guidelines. It has been demonstrated that there is an extraordinary correlation between mutagenic potency and carcinogenicity to man. Thus research on mutagens and carcinogens should be restricted. S. Lederberg, Public Control of Genetic Research, in GENETICS AND THE LAW II, 42 (A. Milunsky ed. 1980). See Note, Living Matter Found to be Patentable: In re Chakrabarty, 11 Conn. L. Rev. 311 (1979).
230. NIH Guidelines, supra note 85, at 60,130.
depending on the assumption that private industry will only conduct research with organisms which they eventually intend to patent.233

As an alternative, the regulation might provide that no patents for microorganisms or processes related to recombinant DNA research will be issued to any research firm or institution unless NIH Guidelines are followed.234 This has both the advantage and disadvantage of relying on voluntary compliance with the NIH Guidelines.235

There are several major advantages to patent incentive manipulation. The intrusion on academic freedom would be minimal because non-use-oriented research would be unaffected. Congress could avoid problems in drafting technical regulatory legislation. The fiscal impact would be minimal because no enforcement would be necessary. The disadvantage of incentive based regulations is that rather than comply voluntarily with the guidelines, or rather than conduct research only with patentable organisms, the private research firms might resort to trade secrecy. Unless the new microorganism or process could be discovered by reverse engineering, the public could be denied valuable information concerning the invention.236 Congress could, however, require prior public disclosure of all private genetic research so as to assure public safety.237 Even though it might preclude patentability, such a measure could be necessary until the dangers of genetic research are eliminated or disproved.238

Testing for Safety

Rather than require disclosure, Congress could require the organism be proven safe before it is mass produced or exposed to

233 See text accompanying notes 213-14 \textit{supra}.

234 This is similar to the provision of S. 621, note 200 \textit{supra}, except that S. 621 required all applicable guidelines be followed and at present there are no guidelines applicable to private genetic research. See notes 171, 179-84 and accompanying text \textit{supra}.

235 The advantage being that the intrusion on the rights of the researchers is minimized. The disadvantage is that researchers only need comply if they intend to seek patents. The regulation would have to provide for a requirement that the NIH Guidelines be followed for a certain period prior to the patent application.

238 \textit{Id.}
the public.239 When a technology is potentially dangerous, or its safety even questionable, it might legitimately be prohibited or regulated until the researcher can demonstrate that no unreasonable danger exists.240 Although this method would serve the purpose of protecting the public from exposure to a dangerous organism, it would do so only after the research is complete and the organism is ready for the market. It would have no effect on the adoption of proper laboratory techniques, nor would it discourage research with dangerous organisms not intended to be marketed.241

\textbf{Liability Insurance/Strict Liability}

An approach that has been suggested for general applicability to genetic research242 is the enactment of a statute similar to the Price-Anderson Act.243 Congress would require all private genetic research firms carry a certain minimum amount of liability insurance and be held strictly liable for injuries caused by their research.244 This principle could also be applied as a condition precedent only to those firms seeking patent protection. The main defect of such an insurance approach is that while it provides relief to victims it does not provide a complete remedy nor prevent what may be irreparable environmental harm caused by a biohazard. It does, however, provide a general deterrent to dangerous research through a market mechanism requiring little governmental intervention.245

\textbf{CONCLUSION}

The task of balancing the competing costs and benefits of ge-

240 Id. Accord Cohen, Restriction of Research with Recombinant DNA: The Dangers of Inquiry and the Burden of Proof, 51 S. CAL. L. REV. 1081 (1978); Hutt, supra note 179, at 1439.

241 For example, an organism used in a process that produces a marketable product.

242 See S. 621, note 200 supra.

244 Friedman, supra note 203, at 1377.

netic research to society is a complex one, requiring detailed examination and carefully constructed legislation. The difficulty of the situation is exacerbated by the need for immediate action to mitigate the dangers inherent in unregulated, private genetic research. While the prohibition of all genetic research is too harsh a protective measure, a certain degree of coercion may be necessary to ensure private industry cooperation with government guidelines. As the Supreme Court noted in *Diamond v. Chakrabarty*, merely denying patents probably will not forestall private genetic research. Yet it is equally clear that extending patents to products of genetic research will not enhance public safety.

The courts are not without the means to deny patent incentives to private genetic research. Patents on microorganisms could be refused based on the ambiguity of the relationship of the Plant Patent Act and the patent statutes. The microorganism could be characterized as embodying a phenomenon of nature, even if the phenomenon is not displayed in nature. The patent could also be denied on the basis of the preemption doctrine. Until such time as legislation is drafted by Congress, the courts should refrain from encouraging unregulated, private research in recombinant genetics, keeping in mind the threat such research poses to society.

While none of the regulations suggested would provide a perfect solution to the problem created by the Supreme Court's decision to encourage unregulated genetic research, they would provide a measure of safety during what must be a short period before Congress acts to provide more comprehensive legislation. Congress may decide not to extend patent protection to the products of genetic research. If so, as the Supreme Court has suggested, the research would continue through the encouragement of the profit motive. Thus merely denying patent protection is insufficient. The most effective solution to the problem would be a combination of the regulatory and patent incentive approaches. Congress should create an agency responsible for the development of regulations governing genetic research, or allocate such power to the Environmental Protection Agency, and provide that agency with the funds and power to enforce its guidelines. As part of this scheme, to penalize noncompliance, no patents should issue to firms or institutions that fail to comply with the regula-

248. *Supra* note 33.
tions. Until such regulation can be enacted, Congress should act to apply the NIH Guidelines to all genetic research.

JAMES F. BRASHEAR