LOCAL LABOR MARKETS EXPOSURE TO ARTIFICIAL INTELLIGENCE

Greg Call

Follow this and additional works at: https://digital.sandiego.edu/dissertations

Part of the Macroeconomics Commons, and the Work, Economy and Organizations Commons

Digital USD Citation
Call, Greg, "LOCAL LABOR MARKETS EXPOSURE TO ARTIFICIAL INTELLIGENCE" (2023). Dissertations. 990.
https://digital.sandiego.edu/dissertations/990

This Dissertation: Open Access is brought to you for free and open access by the Theses and Dissertations at Digital USD. It has been accepted for inclusion in Dissertations by an authorized administrator of Digital USD. For more information, please contact digital@sandiego.edu.
LOCAL LABOR MARKETS EXPOSURE TO ARTIFICIAL INTELLIGENCE

by

Gregory Joseph Call

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

August 2023

Dissertation Committee

Fred J. Galloway, EdD, Co-Chair
Marcus Lam, PhD, Co-Chair
Kevin D. Ward, PhD, Member

University of San Diego
CANDIDATE’S NAME: Gregory Joseph Call

TITLE OF DISSERTATION: LOCAL LABOR MARKETS EXPOSURE TO ARTIFICIAL INTELLIGENCE

APPROVAL:

_____________________________________, Co-Chair
Fred J. Galloway, EdD

_____________________________________, Co-Chair
Marcus Lam, PhD

_____________________________________, Member
Kevin D. Ward, PhD

DATE: June 22, 2023
ABSTRACT

As more evidence builds that artificial intelligence (AI) is a new general-purpose technology driving a fourth industrial revolution, scholars have begun to consider its potential impact on labor markets. The current debate among researchers is centered on whether AI will ultimately produce net new job gains or losses and what type of workers will benefit or be displaced. While no consensus has developed yet within the literature on AI’s predicted net employment impact, a majority of studies are forecasting that a skill-biased technological change will occur.

This exploratory study contributes to the current literature by operationalizing Webb’s objective patent-based AI Exposure Index at a local labor market level. The study leveraged longitudinal data analysis to measure the effect of AI exposure on changes to employment at an occupational level from 2010-2019 in San Diego County, California. By applying this exploratory methodology, the study yielded several noteworthy findings. First, the analysis showed an overall positive association between employment totals and AI exposure across all levels of Webb's AI Exposure Index. Second, preliminary evidence of potential skill-bias change was noted with non-high-skill occupations exhibiting slower employment growth compared to high-skill occupations at similar levels of AI exposure. Lastly, specific occupational groups and occupations displayed potential early indications of employment loss attributable to AI exposure. For example, the occupation titled “Pickers and Packagers, Hand” within the material movers and transportation occupational group demonstrated both high levels of AI exposure and reductions in employment totals during the period analyzed. However, it is critical to emphasize that large standard errors limit the precision of model estimates.
This study has implications for local labor market leaders by providing insights into AI exposure and employment trends. This exploratory methodological approach has potential for application to other local labor markets and offers opportunities for further scholarly research. Finally, this study makes a novel contribution to the labor literature with its localized focus, objective methodology and preliminary occupational-level employment change findings.
DEDICATION

This dissertation is dedicated to the resilient citizens of my birthplace, Saginaw, Michigan, whose labor market endured significant challenges due to recent technological changes.
ACKNOWLEDGMENTS

This dissertation owes its completion to the unwavering support of my committee Co-Chairs. Dr. Galloway contributed critical methodological and technical guidance, along with steadfast belief in me throughout my research. Dr. Lam taught me the quantitative foundations necessary for me to successfully address the study's research questions. I am deeply grateful to both of them for their time, patience, and expertise.
ORDER OF PAGES

ACKNOWLEDGMENTS vii
TABLE OF CONTENTS viii
LIST OF TABLES x
LIST OF FIGURES xi
CHAPTER ONE INTRODUCTION TO THE STUDY 1
 A Brief History of Artificial Intelligence 1
 The Rise of AI 3
 General Purpose Technologies and Technological Job Displacement 4
 Technological Change Employment Theory 5
 AI Employment Theory 7
 Problem Statement 8
 Purpose of the Study 10
 Research Questions 11
CHAPTER TWO LITERATURE REVIEW 13
 AI Employment Theory Research 13
 Task-level research 13
 Occupation-level research 16
 Industry-level research 21
 Summary 23
CHAPTER THREE METHODOLOGY 25
 San Diego County Labor Market 27
 Primary Data Sources Overview 28
 Occupational Data Crosswalk Process 29
 BLS Occupational Data Consolidation 30
LIST OF TABLES

Table 1. San Diego County Occupational Group Breakdown 28
Table 2. Occupations Removed by Data Consolidation & Cleaning Procedures 32
Table 3. Primary and Secondary Linear Growth Curve Models 34
Table 4. Descriptive Statistics of Key Variables 37
Table 5. Primary Growth Curve Model Output 39
Table 6. Secondary Growth Curve Models Outputs 42
Table 7. Occupational Groups Growth Curve Model Outputs 45
Table 8. Occupational Group 53 Exploratory Growth Curve Model Outputs 48
LIST OF FIGURES

Figure 1. Methodology Flow Chart 26

Figure 2. Histogram of Total Employment 2010-2019 38

Figure 3. Histogram of AI Exposure Index Score 39

Figure 4. Primary Model Predicted Growth Curves 2010-2019 39

Figure 5. Secondary Model Predicted Growth Curves For High-Skill Occupations 2010-2019 42

Figure 6. Secondary Model Predicted Growth Curves For Non-High-Skill Occupations 2010-2019 43

Figure 7. Occupational Groups Model Predicted Growth Curves For AI Category 4 Occupations 2010-2019 47

Figure 8. Occupational Group 53 Model Predicted Growth Curves 2010-2019 49
CHAPTER ONE

INTRODUCTION TO THE STUDY

In 2017, Oxford researchers Frey and Osborne published a study called *The future of employment: How susceptible are jobs to computerization?* which brought worldwide attention to artificial intelligence by grabbing headlines globally with its assertion that 47% of total U.S. employment is in the high-risk category for computer automation with the next two decades (Frey & Osborne, 2017). Follow-on global studies have predicted up to 800 million workers globally will be displaced by automation technologies primarily driven by artificial intelligence and robotics (Manyika et al., 2017). Consequently, researchers, the business world, and the media have begun to utilize labels like the *fourth industrial revolution* and the *age of artificial intelligence* to describe the significance of the artificial intelligence phenomenon. Lee describes the potential impact of this phenomenon by stating “Artificial intelligence will do the analytical thinking, while humans will wrap that analysis in warmth and compassion” (Lee, 2018, p. 37). This vision for the future has humans wondering whether artificial intelligence will create a utopia, mass societal upheaval, or some combination of both.

This study examines the artificial intelligence phenomenon by contributing to the emerging scholarly research focused on predicting the impacts of artificial intelligence on labor markets. To provide appropriate context, this initial section of the study details the evolution of artificial intelligence from concept to application, then discusses established theory related to technology and labor markets. Findings from related research focused specifically on artificial intelligence and labor markets are also briefly synthesized and knowledge gaps identified. Lastly, based on the existing knowledge gap, this study’s purpose and research questions are described.

A Brief History of Artificial Intelligence
The renowned British scientist and World War II hero, Alan Turing, is often credited with initiating the age of artificial intelligence (AI) in 1950 when he stated in a paper “I propose to consider the question: Can machines think?” (Muggleton, 2014). Turing’s paper also proposed the “Turing Test” which is an imitation game involving a machine and two humans. If a human is unable to distinguish between the machine and the other human during the game, then the machine is said to be intelligent. Building on Turing and subsequent research, Haenlein and Kaplan (2019) concisely defined AI as “a system’s ability to interpret external data correctly, to learn from such data, and to use those learnings to achieve specific goals and tasks through flexible adaptation”. From its inception as a research concept in the 1950s, there have been two generally accepted AI approaches: rules-based and neural networks. The rules-based approach, which often involves more human intervention and direction, is closely associated with machine learning and dominated the first five decades of AI research. Systems driven by rules-based AI are guided by if X then Y rules provided by humans through technological code. Consequently, the constraints of rules-based AI are similar to any other computer system: human expertise, time, and creativity. These human constraints inherently limited rules-based AI’s adaptability leading to the slow progress of AI more broadly through the late 20th century.

In contrast to rules-based AI, the neural network approach has become the primary focus of AI research in the past two decades due to its high adaptability. Systems driven by neural networks are guided by human-built computing architecture which mimics the thought process of the human brain and is often called deep learning. Once the architecture is constructed, the system is no longer significantly constrained by humans but rather by data and processing power. The 21st-century computing boom driven primarily by high power semiconductors and cloud computing innovations was the main breakthrough that created a technological processing
environment in which big data and neural network AI could thrive. Less constrained by humans, neural network AI has produced an explosion in practical applications leading to popular commercial products like Amazon’s Alexa, Tesla’s self-driving vehicles and Pandora’s music recommender system. These applications are an indication that AI is now shifting broadly from its initial research-focused discovery phase to practical implementation. As Lee points out in his core work *AI Superpowers*, “Much of the difficult but abstract work of AI research has been done, and now it’s time for entrepreneurs to roll up their sleeves and get down to the dirty work of turning algorithms into sustainable businesses” (Lee K.-F., 2018, p. 13).

The Rise of AI

Applying these technological advances, startups as well as established companies are disrupting entire industries. We have already seen significant AI investment and disruption within the automotive industry by emerging companies like Tesla, Nikola, and Neo among many others. The customer service industry is being revolutionized through AI-enabled customer bots developed by startups like Cedex Technologies and Botscrew. Established companies such as Apple, Google, and Amazon have focused on applying AI in the advertising and personal assistant space with Siri, Google Assistant, and Alexa. In 2018, Google famously demonstrated the latest version of its Google Assistant by allowing it to independently conduct a live phone call to schedule a hair appointment. Recent studies have also examined AI’s current or potential impact on health care, food services, finance, and law (Hosny et al., 2018; Luo et al., 2018; Aini, 2020).

The geographic reach of AI is global with impacts estimated across all major economies including China, India, the United States, and the EU (Manyika et al., 2017). China has established itself as a primary global AI power by initiating governmentally supported programs.
to conduct AI research and rapidly operationalize its application (State Council, 2017). Within the last decade, China has closed the AI research gap substantially with Western nations. For example, Tsinghua University of China now has more total AI research citations than Stanford University (Lee K.-F., 2018). Additionally, China’s “big tech” companies such as Alibaba, Tencent, Baidu, and Huawei are rapidly building and launching their own AI applications. This strategic focus by China is expected to expedite the scale and scope of AI development further enhancing its global significance. From its slow start, AI is poised to leave its mark on history in the 21st century and beyond as a new general-purpose technology that scholars assert will drive the **Fourth Industrial Revolution** (Skilton & Hovsepian, 2017; Xu, David, & Kim, 2018; World Economic Forum, 2016; Zhou, Liu, & Zhou, 2015).

General Purpose Technologies and Technological Job Displacement

In order to assess the potential impact on labor markets of an AI-driven fourth industrial revolution, it is critical to understand the core employment aspects of the first three industrial revolutions. Technologies such as steam engines, electricity, internal combustion engines, and modern information technology systems are generally credited with driving the first three industrial revolutions. These technological innovations are commonly referred to as general-purpose technologies due to their technical dynamism, economic pervasiveness, and productivity gains produced (Bresnahan & Tratjenberg, 1992). General purpose technologies shifted global economies from agricultural to industrial and finally to digital. Additionally, these technologies significantly shifted employment by creating new occupations and industries as well as driving technological job displacement by making some jobs completely obsolete. Technological job displacement occurs when technological innovation replaces human labor in work tasks (Petropoulos, 2018). The steam engine, for example, led to the first era of industrialization where
looms in large-scale production factories like textile mills replaced skilled manual laborers such as seamstresses and tailors. The internal combustion engine initiated mass production of machines replacing jobs like blacksmiths and buggy manufacturers. Information technologies (IT) then automated many aspects of mass production replacing manufacturing production workers with robots and software systems.

Technological Change Employment Theory

Prior to the emerging research on the impact of AI on employment, the most applicable scholarly work analyzing technology’s impact on employment developed around the theory of technological change. The roots of the theory of technological change can be traced to economist John Maynard Keynes in the early twentieth century who first asserted that techno-scientific developments produced widespread improvements in standards of living (Mokyr et al., 2015). Numerous studies built upon Keynes’ initial assertion by focusing on the association between the implementation of technology, often general-purpose technologies, and employment outcomes. Together, these studies can be categorized as technological change employment theory.

Scholarly debate within technological change employment theory has focused on two main themes: net employment impact and type of technological change. The general consensus of technological change employment theory asserts that when new technologies enter the labor market, they drive net employment growth over the long run (Aubert-Tarby et al., 2018; Mokyr et al., 2015). More simply, as the U.S. Bureau of Labor Statistics stated, “...technology ultimately creates more jobs than it destroys” (Mark, 1987). The theoretical foundation for this assertion is that technological change increases demand for goods and services through product innovation resulting in job opportunities faster than reducing demand for labor through process innovation which automates job tasks (Dachs, 2017; Vivarelli, 2014; Piva & Vivarelli, 2017). For example,
during the IT revolution, it is estimated that computers enabled the creation of 15.8 million net new U.S. jobs since 1970, accounting for 10% of all employment (Manyika et al., 2017). Dach’s study of EU-based firms during a similar period also demonstrated that, in terms of employment growth, innovating firms outperformed non-innovating firms (Dachs, 2017).

While the consensus within technological change employment theory asserts that technological change leads to overall employment growth, the impact on specific skills and jobs depends on whether the technical change is skill-replacing or skill-biased towards labor (Caselli, 1999; Acemoglu, 2002; Autor et al., 2003). Skill-replacing change is associated with technology that reduces the level of learning and skill required to conduct job tasks. Acemoglu points to the nineteenth-century technological shift to the factory system in Britain as a primary example of skill-replacing change (Acemoglu, 2002). Low-skill rural workers migrated to British cities and replaced skilled artisans by utilizing innovations in interchangeable parts and mass production. Consequently, this skill-replacing change increased lower-skill jobs while reducing specific higher-skill jobs directly impacted by the technical change.

Skill-bias change has the opposite impact of skill-replacing change. Skill-bias change increases the level of learning and skill required to conduct job tasks, thereby, reducing lower-skill jobs and increasing higher-skill jobs. Recent empirical studies have shown a shift to predominately skill-bias change towards the late twentieth century due primarily to a rapid increase in the global supply of highly educated skilled workers during the IT revolution (Dachs, 2017; Piva & Vivarelli, 2017; Acemoglu, 2002; Betts, 1997; Autor et al., 2003). A broad examination of Canada’s industries between 1962 and 1986 also validated the skill-bias change during this period by showing a significant increase in demand for white-collar workers in relation to blue-collar workers (Betts, 1997). As Vivarelli (2014) states “...the evidence in favor
of the skill-biased nature of new technologies is large, robust, and proven across different OECD countries, different economic sectors and different types of innovation”.

AI Employment Theory

Compared to technological change employment theory, artificial intelligence employment theory is still in its infancy with less than ten years of accumulated research to date. Additionally, the age of AI is evolving every day with new applications of AI-powered technologies emerging and subsequently shaping labor market dynamics in real-time. Consequently, no scholarly consensus has been established to date on either a generally accepted theoretical approach or the predicted employment impact of AI. The current debates among scholars examining the intersection of AI and employment focus on two main issues: first, whether AI will ultimately destroy more jobs than it creates and, secondly, what types of jobs will be most impacted by AI. Some scholars assert that AI’s impact on labor markets will closely resemble the predicted outcomes provided by technological change employment theory with overall net employment increasing and skill-bias change most likely occurring within labor markets (Manyika et al., 2017; World Economic Forum, 2016). Other researchers contend that AI will cause new and substantial risks to labor markets (Lee, 2018; Webb, 2019).

The vast majority of initial AI employment research has taken three main approaches, based on the study’s unit of analysis: task-based, occupation-based, and industry-based. Task-based AI employment research assesses the potential impact of AI on individual work tasks by cross-referencing known AI applications and detailed work task descriptions. Occupation-based research focuses on jobs as its unit of analysis and attempts to predict AI’s potential impact on national or global labor markets. The industry-based approach analyzes the potential disruption of entire business sectors by AI applications which correspondingly drive scaled technological
displacement. A recent and compelling addition to the AI employment research landscape is Webb’s (2019) study *The Impact of Artificial Intelligence on the Labor Market*. Webb’s research focuses its analysis on actual patents that have been filed for AI technologies. By utilizing textual analysis, Webb associates the technological functionality found within the patent description with job tasks connected to specific occupations. Webb’s objective-based analysis builds on the current task-level and occupation-level approaches to provide an AI exposure score index that can be applied to all U.S. occupations. As scores increase on Webb’s index, exposure to AI technologies increases for occupations as well as predicted employment loss. This new objective methodology is significant because it leverages emerging AI applications found in patents to drive its predictive approach.

Problem Statement

With a consensus built around the global significance of the AI phenomenon, it is critical that scholars explore all aspects of its potential impact. While recent studies are reaching a critical mass of research focused on AI’s potential influence on labor markets, two main knowledge gaps still persist in the literature. First, a common research approach within AI employment theory is to focus on the macro-level analysis of national, regional, industrial, or world labor markets. This macro-level tendency often creates a knowledge gap in the predicted net employment difference and type of technological change impact on local labor markets. This gap is significant because local labor markets often lack the diversification of national or global labor markets making them potentially more susceptible to the impacts of technological change. For example, while the IT industrial revolution created substantial net new job growth throughout the diverse U.S. labor market, local labor markets in the U.S. with high exposure to robots suffered negative labor demand shocks (Acemoglu & Restrepo, 2017). These negative
labor demand shocks are associated with sudden and unexpected downward changes in demand for labor. Scholars have linked these negative labor demand shocks to higher unemployment, lower wages, and shifts to a lower-educated workforce within a labor market (Diamond, 2016; Notowidigdo, 2011). Consequently, these shocks can have serious impacts on local labor markets and the connected local workforce. Therefore, with AI predicted to continue playing a vital role in the evolution of labor markets, AI employment research should broaden its scope to address local labor market dynamics.

Second, because the AI phenomenon is so new and still evolving, studies rely heavily on the existing technological change employment theory or subjective-based methodologies like expert surveys and broad-based classifications to drive their predictive analysis. The dependence on technological change employment theory within studies generates reliability risk to their predictive models. Utilizing theory based on technologies from the past does not fully take into consideration how outcomes from AI might differ. These potential differences could then produce inconsistent findings within research models over time. Additionally, reliance on subjective-based methodologies increases the validity risk of these AI studies. As AI evolves and more is known about its impact, it is reasonable to assume expert opinions on AI will change as well. Consequently, research findings that depend on current expert opinions must be scrutinized. The tendency of AI researchers to apply subjective broad-based classifications to drive models also increases the potential for inaccurate findings. For example, several AI studies have grouped thousands of individual work tasks into general classifications (such as manual, cognitive, routine. and complex tasks) and then associated technological job displacement with a specific classification grouping. Going forward, to improve predictive accuracy, scholars should
strive to build models that are more objective-based and avoid broad generalizations of work tasks or occupations.

Together these knowledge gaps create challenges for local labor market leaders and correspondingly local workforces. With limited valid and reliable models to predict the impact of AI on their labor markets, local leaders cannot conduct effective proactive workforce planning to prepare for possible labor demand shocks. Typical consequences of ineffective workforce planning include limited training programs in high-demand occupations and inadequate workforce transition resources. Without available training and resources, local workers have a higher likelihood of experiencing the negative impacts of technological job displacement through unemployment, wage stagnation, and fewer career opportunities. This vicious cycle can then lead to the decline of entire communities through the reduction of local revenue, public services, and human talent.

Purpose of the Study

To prevent this vicious cycle, local labor market leaders need access to locally focused, objective-based models that predict AI’s specific impact on their local labor markets. This study seeks to fill this knowledge gap by employing an exploratory approach that operationalizes Webb’s objective patent-based AI exposure index at a local labor market level. The purpose of this exploratory operationalization of Webb’s instrument is to attempt to provide local labor market leaders with an objective-based model to assess their local labor market’s exposure to current and future AI-driven technologies. The study utilizes San Diego County, California as the local labor market for analysis. The data foundation of the analysis of San Diego County is the Department of Labor’s *Metropolitan and Nonmetropolitan Area Occupation Employment and Wage Estimates* which provides publicly available occupation-level local labor market data.
on an annual basis. By leveraging publicly available data, this study seeks to build a
generalizable model that can be applied to any local labor market within the U.S. while
providing local leaders with the necessary understanding of their labor market’s exposure to AI.
Ultimately, this model is intended to help prevent vicious cycles from occurring within local
communities by equipping local leaders with a tool to provide the required knowledge to
proactively plan for the age of AI.

Research Questions

This study’s research questions focus on evaluating Webb’s AI exposure index as a tool
for local labor leaders by testing the predictive capability of the index when applied to the
Bureau of Labor Statistics’ (BLS) Metropolitan and Nonmetropolitan Area Occupation
Employment and Wage Estimates for San Diego County. The first research question evaluates
the net employment impact of AI at the occupational level: To what extent, if any, is there an
association between changes in San Diego County employment at an occupational level from
2010-2019 and Webb’s AI exposure index scores? Webb’s research asserts that there will be a
positive association between job losses and exposure score at an occupational level. The second
research question evaluates the type of employment impact of AI at a skill designation level: To
what extent, if any, is there an association between changes in San Diego County employment
at an occupational skill designation level from 2010-2019 and Webb’s AI Exposure Index
scores? Webb predicts AI will drive skill-replacing change impacting higher skill occupations.
As Webb’s succinctly states, “AI is directed at high skill tasks” (Webb, 2019, p. 1). By
evaluating these research questions, the predictive capability of Webb’s AI exposure index can
be assessed.
CHAPTER TWO
LITERATURE REVIEW

The literature review process began by identifying scholarly research focused on artificial intelligence and employment, eventually classified within the review as artificial intelligence employment theory. The global scope of the research examined was a critical component of the process because the global nature of the artificial intelligence phenomenon became apparent quickly during the initial review of the literature. Four main academic databases were utilized to conduct literature searches: EBSCOhost Academic Search Premier, ProQuest Dissertations & Theses Global, Journal of Artificial Intelligence Research (and other related journals), and Google Scholar. A standard search in Academic Search Premier for artificial intelligence and employment returned 225 peer-reviewed literature results. An initial review of the most relevant literature led to a secondary search for fourth industrial revolution due to its frequency of mention within works and its historical context. This led to an additional 49 pieces of literature to examine.

Guided by the focus of this study, three main research topics of the examined studies were excluded from this literature review. First, studies exploring artificial intelligence and ethics were excluded because this study does not inquire into the ethical issues of artificial intelligence. Second, research studies examining artificial intelligence’s direct impact on labor wages (growth and/or suppression) were excluded because this study focuses on AI’s net employment and skill outcomes. Lastly, governmental artificial intelligence policies and examinations of those policies were also deemed out of scope for this study. Additional separate searches were conducted to provide historical context and definitions of key terms as well as to explore technological change theory which became a foundational component of the literature
upon initial examination of artificial intelligence employment research. Ultimately, this framework produced the 56 works of literature included in this review.

Utilizing this literature, key definitions, historical context, and established theory were provided in the background of the study section. Then, a process of discovery, synthesis, and analysis was conducted within AI employment research to categorize and assess the different scholarly approaches. A further detailed examination of Webb’s study is also conducted to reinforce its novel approach and significance within the literature. Overall, this review seeks to present a concise and comprehensive overview of the current state of the emerging literature driving AI employment theory.

AI Employment Theory Research

With technological change employment theory established as the academic standard, scholarly research recently began to be published that examines AI’s potential impact on employment. While some findings within this emerging literature aligned with the established consensus, other research findings appeared to challenge the status quo. This review synthesizes and categorizes AI employment research into three main approaches based on methodology: task-based, occupation-based, and industry-based. The review then examines the research findings associated with AI’s net employment impact and type of technological change as well as scrutinizes each methodological approach.

Task-level research

Task-level research focuses its unit of analysis at the lowest level, job tasks. Frey and Osborne’s (2017) study, *The future of employment: How susceptible are jobs to computerization?*, initiated and brought worldwide attention to the potential sweeping effects of AI on employment with its assertion that 47% of total U.S. employment is in the high-risk
category for computer automation with the next two decades. This study applied a task-based model to 702 job occupations within the U.S. government’s O’NET system. Frey and Osborne’s task-based model mapped key indicators preventing what the authors term “computerization” or susceptibility to AI-driven technologies to job tasks found in the O’NET system. Lower levels of these indicators found within job tasks meant a higher risk for computerization. Utilizing this methodology, 47% of jobs were deemed high risk and 19% medium risk to computerization within the next two decades.

Frey and Osborne’s (2017) findings focus primarily on the job displacement potential of AI driven technologies. Therefore, they do not attempt to directly predict the overall net employment impact of computerization. However, with 66% of total jobs assessed at high or medium risk of displacement, their analysis alludes to the correspondingly high levels of job creation that would need to occur to balance or exceed potential job destruction over the next two decades. While Frey and Osborne don’t predict the overall net employment impact, their study does predict which types of jobs will be impacted. Unlike the IT revolution which increased low-skill service-oriented jobs, Frey and Osborne’s analysis predicts these jobs will be at high risk for displacement in the near future. Other job categories deemed at risk include logistics, transportation, office support, and production occupations. In contrast, Frey and Osborne predict high-skill jobs, like science and engineering, are the least susceptible to computerization asserting a probable skill-bias change with AI-driven computerization.

Acemoglu & Restrepo (2018) built on Frey and Osborne’s (2017) task-based approach by attempting to address the net employment effect of AI-driven automation. Their task-based framework accepts that job displacement will occur due to automation but also emphasizes the creation of new tasks which have the potential to balance the net employment impact. This
assertion fills the central employment gap in Frey and Osborne’s work. Additionally, Acemoglu and Restrepo challenge Frey and Osborne’s skill-bias change assertion. Through a task-based model that examined both high and low-skill AI-driven automation, their findings conclude that AI will have a displacement effect on both high and low-skill jobs indicating the potential skill-replacing change of this new technology.

Duckworth, Graham & Osborne (2019) fill two additional gaps in the task-based approach in their study *Inferring Work Task Automatability from AI Expert Evidence*. First, by surveying over 150 AI academics on how automatable job tasks are today, their research methodology provides additional substantiation to the conceptual task-based frameworks of Frey and Osborne and Acemoglu and Restrepo. Second, by surveying academics across the world, their research includes broad non-western-based insights that support the generalizability of the findings. Regarding the potential net employment impact of AI, the study found that eight times as much work lies between “mostly” and “completely” automatable than between “mostly not” and “not at all” automatable. This finding indicates a significant probability that job displacement will outpace job growth. Their findings also show that higher income and educated workers are more likely to have less automatable jobs which forecasts a skill-bias technical change.

Nedelkoska & Quintini (2018) further enhanced the global scope of task-based AI employment predictions by applying Frey and Osborne’s task-based methodology along with localized survey data to analyze the employment impact of AI-driven automation on 32 European-centric countries within the Organisation for Economic Co-operation and Development (OECD). Their study found that 14% of the jobs in OECD countries have more than a 70% probability of automation and another 32% have between 50-70% probability. Like
Frey and Osborne, Nedelkoska and Quintini avoid directly predicting the net employment impact of AI-driven automation, only mentioning the potential for job creation due to this technology. The research does, however, call out the skill-bias nature of AI in their findings noting that “...occupations with the highest estimated automatability typically only require basic to low level of education. At the other end of the spectrum, the least automatable occupations almost all require professional training and/or tertiary education” (Nedelkoska & Quintini, 2018, p. 8).

While a consensus within the task-based approach is still emerging, this methodology has dominated initial research efforts to date and early evidence is clearly challenging the general assertions of earlier research on the impact of technological change on employment. Currently, most of the task-based research is skeptical about overall employment growth due to AI and it is also unclear whether skill-bias or skill-replacing change will prevail. As task-based theory continues to develop, researchers should find additional data sources outside of the United States (U.S.) government’s O’NET system to base their studies on. Continuing to build on studies focused on the O’NET system for task-level job details limits generalizability when applying findings outside of the U.S. Agrawal, Gans, and Goldfarb (2019) also challenged the reliability of analyzing AI-driven automation through the numerous job tasks listed in O’NET. Their study argues that only two tasks, prediction and decision, need to be analyzed to assess the potential risk of automation of a job. Corelli and Borland (2019) also challenged the “...replicability, internal consistency and subjectivity” of Frey and Osborne’s methodology which is the foundation of most task-based research. They assert that jobs should be analyzed using the categories of routine/non-routine and cognitive/manual rather than O’NET task-level data.

Occupation-level research
Occupation-level research concentrates its study’s unit of analysis on occupations that are comprised of multiple job tasks. In 2017, the business consulting firm McKinsey released their global employment assessment of AI-driven technologies in their report *Jobs Lost, Jobs Gained: Workforce Transitions in a Time of Automation* (Manyika, et al., 2017). McKinsey employed a “micro-to-macro” methodology for this occupation-based analysis by applying economic labor theory in combination with interviews of global leaders which broadened the scope of the task-based approach making occupations rather than job tasks the main unit of analysis. The global scale of this study included 46 countries and 800 occupations. By 2030, McKinsey estimates 400 to 800 million workers globally will be displaced by automation technologies primarily driven by AI and robotics. This finding represents 15-30% of the total global workforce. Additionally, while few occupations were deemed fully automatable, 60% of all occupations were assessed to be at least 30% automatable. Based on their model, while 400 to 800 million workers will be displaced, future non-AI-impacted job growth in health care, energy and technology will create over 200 million global jobs. McKinsey also predicts, by 2030, another 8-9% of jobs will be “new occupations”, resulting primarily from AI-driven automation, that does not currently exist.

While McKinsey’s model suggests some periods of potentially high unemployment especially in advanced economies, McKinsey asserts that full employment will be reached by 2030 in spite of the technological displacement due to significant job creation driven by rising income levels, investments in infrastructure and sector growth in health care, energy, and technology. According to their findings, developing countries appear less susceptible to employment impacts of AI automation while advanced countries will require rapid reemployment of workers to reach full employment. McKinsey estimates up to 375 million workers will require job changes and the retraining of the workforce will be critical to reduce the
risk of technological unemployment. From a skills perspective, McKinsey highlights that automation technologies will impact all skill levels of workers. However, their findings indicate primarily skill-bias change as the growing job categories in their model have higher educational requirements than the workers displaced by automation technologies. By 2030, their study predicts new job tasks will involve more application of expertise, stakeholder interaction, and people management with less involvement in data collection, data processing, and predictable physical activities. The advantage from a skills perspective appears to be higher-educated, traditionally high-skilled occupations.

Muro, Maxim & Whiton (2019) applied McKinsey’s occupation-based methodology to a solely U.S. occupations data set to conduct a forward-looking analysis on U.S. occupations. Their findings assert that 25% of U.S. jobs will be highly exposed to AI-driven displacement and another 36% of jobs will experience medium exposure. The study predicts a muted impact on net employment due to job growth in new occupations driven by AI. The study also asserts that better-educated, higher-paid workers are half as likely (24% vs. 55%) to face exposure to AI job displacement. While this indicates skill-bias change, Muro, Maxim, and Whiton acknowledged this could shift as AI puts pressure on higher-wage, non-routine jobs in the future.

While its analysis expanded outside of just AI-driven technologies, the World Economic Forum’s (WEF) Future of Jobs study also contributes to the occupation-based approach (World Economic Forum, 2016). By collecting employment survey data directly from global corporate leaders across 15 major developed and emerging economies and regional economic areas, the WEF produced potentially more generalizable findings on future employment impacts on job families (occupations). Among its findings, WEF asserts a net employment impact of 5.1 million jobs lost by 2020. Correspondingly, survey respondents identified AI as the second most
important driver of job losses. The largest categories of AI job losses are predicted within the office administration, manufacturing, and construction job families. AI-driven job growth is predicted within the computer, mathematical, architecture, and engineering job families. Consequently, the study also indicates a skill-bias change favoring higher education level occupations.

A consensus is building with early research within the occupation-based theory that appears to indicate a skill-bias change will be occurring that favors high-skill workers. However, predictions on the net employment impact are currently mixed. The strength of the occupation-based approach is the broad scale and scope of studies which enhances their validity and potential generalizability. Global corporate leadership perspectives, macro-level economic growth projections, required workforce skill upgrades, labor market occupational mixes, and governmental transition support are all taken into consideration in the occupation-based research designs and methodologies. The significant differences in findings regarding net employment impact do call into question the overall reliability of this approach in measuring these outcomes. If future occupation-based studies continue to produce varied employment assertions, it could indicate that occupations are not an appropriate unit of analysis. Additionally, Susskind (2017) has challenged a core assumption of the occupation-based approach that new job tasks created by AI driven technologies will result in occupational job growth. Susskind’s pessimistic view of the threat of automation argues that recent research has consistently underestimated the capabilities of machines. Therefore, Susskind predicts that machines will more broadly encroach on new job tasks in the future ultimately reducing potential job creation within occupations.

Hybrid approach: Webb’s AI Exposure Index
Several recent studies have measured the unprecedented increase of AI patent filings in the U.S. and internationally (Abadi, H. H. N. & Pecht, M., 2020; World Intellectual Property Organization, 2019; Toole, A., et al., 2020). Recognizing key operational information contained within these patents, Webb built on aspects of both task and occupation-level research to construct a new objective method of assessing occupational-level job task exposure to AI. Webb’s methodology leveraged the text within AI patents which describe the core functionality of these new technological applications. Through textual analysis of verb-noun combinations, Webb examined the overlap of tasks detailed within the patents to job tasks detailed for 964 occupations in the O’NET system. The frequency of verb-noun matches was then associated with an occupational exposure score based on a scaled index from 1 (lowest) to 100 (highest).

Webb validates the potential predictive capability of the study’s AI Exposure Index by applying the same methodology to two other recent technologies, robots and software, and measuring their effects over a 30-year period from 1980-2010. The findings of this analysis associate higher exposure scores with actual reductions in employment levels in occupations exposed to these technologies. While this methodology doesn’t directly address the overall net employment impact of technologies, it does enable researchers to focus measurement at an occupational level. Thus, the index can be applied to occupational data to conduct predictive analysis on labor markets. With regard to measuring the type of technological change, Webb’s scaled index provides a direct exposure assessment of all examined occupations. The study’s findings indicate a higher potential for skill-replacing change from AI. As Webb states “...I find that high-skill occupations are most exposed to AI, with exposure peaking at about the ninetieth percentile. While individuals with low levels of education are somewhat exposed to AI, it is
those with college degrees, including master’s degrees, who are most exposed” (Webb, 2020, pg. 4).

The measurement validity, occupational specificity, and task-level objective basis of Webb’s AI Exposure Index provide an attractive foundation for further research to build on. While other AI employment theory studies leverage expert opinions, surveys, or broad task classifications, Webb’s research is grounded in a transparent and replicable evidence-based methodology focused on known AI applications. A limitation of Webb’s research, like other AI employment theory studies, is the sole reliance on the O’NET system for textual analysis of job tasks. This system is distinct to only U.S. occupations and therefore has somewhat limited generalizability globally. Additionally, while patent texts are trustworthy sources for functional descriptions of technology the actual application of the technology in real-world settings might expand or restrict the tasks it can execute. Consequently, the reliability limitations of patent texts as the single task-level source of measuring AI technologies capabilities must be acknowledged.

Industry-level research

Lee’s (2018) work *AI Superpowers: China, Silicon Valley and the New World Order* is core to the debate within AI employment theory due to the unique AI expertise of the author and the significance of its findings. As a former published AI scholar that built AI research teams at Microsoft and Google before founding his own AI-focused venture capital firm in China, Lee’s experience is novel and important in that he has expertise in the nuances of the productization of AI as well as China’s potential role in the AI revolution (Lee K. F., 1988). Lee’s methodology applies his experience and knowledge of existing research and approaches within both Silicon Valley and China to fill a practical gap in AI employment theory.
Rather than adopting a task or occupation-level perspective, Lee employs an industry-based approach to evaluating AI’s impact on employment. His industry-based approach categorizes job displacement into two distinct categories, one-to-one replacements and ground-up disruptions. One-to-one replacements are similar to displacements described in Frey and Osborne and McKinsey’s studies, essentially an AI-driven product or process replaces a job task, job, or occupation. In the U.S., Lee estimates 38% of job losses will be caused by one-to-one replacements. Ground-up disruptions, however, are the reimagining of entire industries utilizing AI. Lee asserts that the future capabilities of AI will drive such significant disruption within certain industries that their entire workforces from top to bottom will be substantially displaced. Lee predicts the grocery industry, for example, is highly susceptible to ground-up disruption as cashiers are replaced with computer vision, stockers are replaced with smart robots, and fewer store managers are required to lead the diminished workforce. Lee estimates an additional 10% job displacement due to ground-up industry disruption bringing his prediction to a total of 48% U.S. job loss due to AI-driven technologies within ten to twenty years. Lastly, while he does not provide a specific prediction, Lee argues that the rest of the world will exhibit potentially even higher rates of job displacement as AI technology will be largely controlled by Chinese and U.S. firms.

Lee concedes that entirely new occupations created by AI and governmental intervention will likely slow the rate of AI-driven job losses. Consequently, he asserts actual AI-induced net unemployment will be between 10-25% in the next ten to twenty years. Critical to Lee’s assertion is that the 10-25% net unemployment could be persistent if not permanent and far worse outside of the “AI Elite”, China, and the United States. His industry-based approach also challenges AI technologies as a skill-bias change. Lee’s ground-up disruption dynamic produces
a mixed bag of displacement winners and losers. Low-skill jobs requiring asocial, low dexterity, and structured environments are deemed high risk for displacement due to one-to-one replacement. However, traditionally high-skill industries such as finance, media, and healthcare are also identified as high risk for ground-up disruption. Lee’s industry-based approach produces both skill-replacing and skill-bias outcomes that don’t clearly benefit one specific skill level over another.

The strength of Lee’s industry-based research is that it is heavily grounded in lived and directly observed experience rather than purely theoretical in nature. Lee has participated in the AI ecosystem at multiple levels, including as a scientist, entrepreneur, AI technology investor, and thought leader. This historical perspective and closeness to current AI developments provide significant credibility to his arguments. However, Lee’s core concept of ground-up AI disruption must be able to stand up to scientific scrutiny to be considered a fully valid addition to AI employment theory. The ground-up disruption concept is clearly defined within his research so there is potential for follow-on studies building on this framework. To ultimately find an industry-based approach consensus, this approach must be scrutinized and empirically tested by the broader scientific community.

Summary

Compared to technological change employment theory, AI employment theory is still in its infancy with less than ten years of accumulated research to-date. Consequently, no scholarly consensus has been established on either a generally accepted theoretical approach or a projected employment impact and type of change. The different theoretical approaches within the literature produce diverse ranges of AI’s employment impact from projections of 10-25% net unemployment to full employment. More consensus is beginning to develop regarding AI’s
impact on skills with the current majority of literature indicating a skill-bias change will occur that favors high-skill, higher-educated workers over low and middle-skill, less-educated workers. However, the minority skill-replacing change perspective from scholars such as Webb must still be considered due to the validity of their studies.

Holistically, AI employment theory literature has gaps in both methodology and application. Specifically, research design and methods rely heavily on subjective expert opinions or researcher assumptions based on established theory. Given the complexity and dynamic nature of AI, the reliability of these study’s findings must be scrutinized over time. Additionally, the majority of these findings in each of the three approaches are applied at a macro-level such as global, regional or national labor markets. Consequently, the generalizability of the findings when applied at a reduced scale, local labor markets, is uncertain as local labor market often lack the occupational and industrial diversity of macro-level environments. Lastly, the majority of the studies do not publicly disclose the actual instruments utilized to develop the study’s findings impeding both replicability of the methodologies and further research building on the studies.
CHAPTER THREE

METHODOLOGY

With the age of AI rapidly emerging, local labor market leaders are dependent on research to provide insights into the potential employment and skill level impact of this new technology. This section describes the data and methods utilized by this study to construct an exploratory model for local labor market leaders to assess their local labor market’s exposure to AI-driven technologies. The area of analysis for this study is the San Diego County labor market which is comprised of more than 600 unique occupations. The period of analysis ranges from May 31, 2010, to May 31, 2019. This period of analysis was selected for two main reasons. First, consistent localized and occupational-level labor market data was unavailable from the Bureau of Labor Statistics (BLS) prior to 2010. Second, the Covid-19 pandemic began in February 2020 and led to drastic changes throughout global labor markets. As the BLS stated “The COVID-19 pandemic prompted an economic recession from February 2020 to April 2020, leading to substantial declines in output and employment. While the recession only lasted a few months, the pandemic persisted through 2021, continuing to disrupt economic activity, prevent or discourage individuals from re-entering the labor force, and impact other economic conditions that affect employment” (U.S. Bureau of Labor Statistics, 2022c, pg. 2). Consequently, labor market data from 2020 onward was excluded because it deviates significantly from the overall trend.

To assess San Diego County’s potential susceptibility to known AI technologies, Webb’s AI exposure index was applied to the San Diego County labor market by measuring changes in employment from 2010-2019 at an occupational level. Critical occupational level data including occupational codes and employment levels within San Diego County is measured annually through the BLS Metropolitan and Nonmetropolitan Area Occupation Employment and Wage
Estimates Report. To develop the final dataset for analysis, the BLS occupational data was associated to Webb’s AI exposure index by leveraging a crosswalk utilizing Dorn’s occupation system as well as census occupational codes. Lastly, occupations were further classified with skill designations utilizing workers’ educational attainment levels in order to assess the potential skill-replacing or skill-bias employment changes.

A series of linear growth models were estimated to address the study’s research questions. For research question #1, this study examines: To what extent, if any, is there an association between changes in San Diego County employment at an occupational level from 2010-2019 and Webb’s AI Exposure Index scores? For research question #2, this study examines: To what extent, if any, is there an association between changes in San Diego County employment at an occupational skill designation level from 2010-2019 and Webb’s AI Exposure Index scores? After detailed data cleaning procedures, the study’s final dataset contains 352 occupations and 3,520 employment total observations over the period of analysis. The outcome variable is the occupational-level employment totals. Predictor variables for modeling include the years of analysis and categorized AI exposure index scores. The study also utilizes occupational-level skill designations and occupational groups as added interaction variables. Figure 1 provides an overview of this study’s methodology.

Figure 1

Methodology Flow Chart
San Diego County Labor Market

According to the BLS, San Diego County is the 18th largest metropolitan labor market in the United States with total employment of 1,390,000 as of May 2021. The occupational breakdown of San Diego County’s labor market is fairly representative of the broader U.S. national labor market with 16 of the 22 major occupational classifications employed within 1% of national employment averages. San Diego County’s highest employed occupational classifications are office and administrative support, sales and food preparation and serving related occupations. It slightly exceeds national employment averages in management, architecture and engineer occupations as well as life, physical and social science occupations by between 1.0 - 1.3%. Production, office and administrative support, transportation and material moving occupations were recorded between 1.1-2.3% less than the national averages. Mean weekly wages within San Diego County in 2022 were measured at $1,484 which exceeds the national average of $1,374 (U.S. Bureau of Labor Statistics, 2022a). Unemployment in 2022 was also measured at 3.4% compared to the 3.8% national average. Overall, San Diego County has an occupationally diverse and balanced labor market with above average wages and employment
levels. Table 1 displays San Diego County’s labor market employment totals and percentages by occupational group and corresponding national employment percentages.

Table 1

San Diego County Occupational Group Breakdown (U.S. Bureau of Labor Statistics, 2022b)

<table>
<thead>
<tr>
<th>OCC_CODE</th>
<th>OCCUPATION</th>
<th>SAN DIEGO - TOTAL EMPLOYMENT</th>
<th>PERCENTAGE OF SAN DIEGO EMPLOYMENT</th>
<th>PERCENTAGE OF NATIONAL EMPLOYMENT</th>
<th>DIFFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-0000</td>
<td>All Occupations</td>
<td>1,390,410</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11-0000</td>
<td>Management Occupations</td>
<td>105,500</td>
<td>7.6%</td>
<td>6.3%</td>
<td>1.3%</td>
</tr>
<tr>
<td>13-0000</td>
<td>Business and Financial Operations Occupations</td>
<td>101,930</td>
<td>7.3%</td>
<td>6.4%</td>
<td>0.9%</td>
</tr>
<tr>
<td>15-0000</td>
<td>Computer and Mathematical Occupations</td>
<td>55,750</td>
<td>4.0%</td>
<td>3.3%</td>
<td>0.7%</td>
</tr>
<tr>
<td>17-0000</td>
<td>Architecture and Engineering Occupations</td>
<td>39,600</td>
<td>2.8%</td>
<td>1.7%</td>
<td>1.1%</td>
</tr>
<tr>
<td>19-0000</td>
<td>Life, Physical, and Social Science Occupations</td>
<td>25,900</td>
<td>1.9%</td>
<td>0.9%</td>
<td>1.0%</td>
</tr>
<tr>
<td>21-0000</td>
<td>Community and Social Service Occupations</td>
<td>24,110</td>
<td>1.7%</td>
<td>1.6%</td>
<td>0.1%</td>
</tr>
<tr>
<td>23-0000</td>
<td>Legal Occupations</td>
<td>12,290</td>
<td>0.9%</td>
<td>0.8%</td>
<td>0.0%</td>
</tr>
<tr>
<td>25-0000</td>
<td>Educational Instruction and Library Occupations</td>
<td>80,050</td>
<td>5.8%</td>
<td>5.8%</td>
<td>0.0%</td>
</tr>
<tr>
<td>27-0000</td>
<td>Arts, Design, Entertainment, Sports, and Media Occupations</td>
<td>17,360</td>
<td>1.2%</td>
<td>1.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td>29-0000</td>
<td>Healthcare Practitioners and Technical Occupations</td>
<td>78,970</td>
<td>5.7%</td>
<td>6.2%</td>
<td>-0.6%</td>
</tr>
<tr>
<td>31-0000</td>
<td>Healthcare Support Occupations</td>
<td>69,680</td>
<td>5.0%</td>
<td>4.7%</td>
<td>0.3%</td>
</tr>
<tr>
<td>33-0000</td>
<td>Protective Service Occupations</td>
<td>33,970</td>
<td>2.4%</td>
<td>2.4%</td>
<td>0.0%</td>
</tr>
<tr>
<td>35-0000</td>
<td>Food Preparation and Serving Related Occupations</td>
<td>118,300</td>
<td>8.5%</td>
<td>8.0%</td>
<td>0.6%</td>
</tr>
<tr>
<td>37-0000</td>
<td>Building and Grounds Cleaning and Maintenance Occupations</td>
<td>42,880</td>
<td>3.1%</td>
<td>2.9%</td>
<td>0.2%</td>
</tr>
<tr>
<td>39-0000</td>
<td>Personal Care and Service Occupations</td>
<td>29,600</td>
<td>2.1%</td>
<td>1.8%</td>
<td>0.3%</td>
</tr>
<tr>
<td>41-0000</td>
<td>Sales and Related Occupations</td>
<td>126,320</td>
<td>9.1%</td>
<td>9.4%</td>
<td>-0.3%</td>
</tr>
<tr>
<td>43-0000</td>
<td>Office and Administrative Support Occupations</td>
<td>162,010</td>
<td>11.7%</td>
<td>13.0%</td>
<td>-1.3%</td>
</tr>
<tr>
<td>45-0000</td>
<td>Farming, Fishing, and Forestry Occupations</td>
<td>3,040</td>
<td>0.2%</td>
<td>0.3%</td>
<td>-0.1%</td>
</tr>
<tr>
<td>47-0000</td>
<td>Construction and Extraction Occupations</td>
<td>61,890</td>
<td>4.5%</td>
<td>4.2%</td>
<td>0.3%</td>
</tr>
<tr>
<td>49-0000</td>
<td>Installation, Maintenance, and Repair Occupations</td>
<td>45,160</td>
<td>3.2%</td>
<td>4.0%</td>
<td>-0.7%</td>
</tr>
<tr>
<td>51-0000</td>
<td>Production Occupations</td>
<td>67,020</td>
<td>4.8%</td>
<td>6.0%</td>
<td>-1.1%</td>
</tr>
<tr>
<td>53-0000</td>
<td>Transportation and Material Moving Occupations</td>
<td>89,080</td>
<td>6.4%</td>
<td>9.0%</td>
<td>-2.6%</td>
</tr>
</tbody>
</table>

Primary Data Sources Overview

The first main dataset utilized to construct the proposed local labor market AI exposure model was the Metropolitan and Nonmetropolitan Area Occupation Employment and Wage Estimates Report. The BLS publishes the Metropolitan and Nonmetropolitan Area Occupation Employment and Wage Estimates Report annually based on employment and wage survey results from 131,000 U.S. businesses and governmental entities. In its most recent release covering June 2020 - May 2021, the report detailed employment and wage data for 682 occupations across 396 predefined local labor markets. Each occupation is also labeled with a six-digit code derived from the BLS’ standard occupational classification (SOC) system. The
first two SOC numbers correlate directly to broader “major” occupational group classifications while the last four SOC numbers provide unique occupation designations. For example, the occupation titled “Chief Executives” is labeled with the occupational code 11-1011 which represents it as part of the 11-0000 series of occupations associated with the master classification of “Management Occupations”. This occupational coding system helps facilitate multi-level analysis of the occupational data. This annual report is widely considered highly valid and reliable due to its large survey sample size and the historical accuracy of its findings. Therefore, it provides an outstanding foundation to analyze changes in occupational data over time.

The second primary dataset leveraged for this study is Webb’s AI Exposure Index. Webb’s instrument associates 341 occupations with corresponding AI exposure scores that range from the highest exposure score of 100 to the lowest score of 1 based on patent-level analysis (Appendix A). For example, the occupation title “Construction laborer” measured 48 on Webb’s index indicating moderate exposure to known AI technological applications. Some occupations that measured at the highest exposure score (100) include power plant operators, chemical engineers, and optometrists while funeral directors, food preparation workers, and animal caretakers were among the occupations with the lowest score (1) indicating very minimal susceptibility to known AI technologies. Webb utilizes a modified version of the census occupational coding system, “occ1990dd”, to associate his index scores to occupations. This “occ1990dd” coding was developed by Dorn (2009) to facilitate extended time period analysis of census occupational data.

Occupational Data Crosswalk Process

Occupations and, correspondingly, occupational coding systems change over time as new occupations emerge and non-active occupations diminish within labor markets. This perpetual
change creates challenges for researchers seeking to accurately measure the effects of variables on employment over extended time periods. The bicentennial U.S. census was the first instrument utilized to collect consistent occupational-level data that could be aggregated for empirical studies. However, the census occupational coding system changed drastically from 1950-2000 as the number of census occupations ultimately increased from 287 to 543 (Meyer & Osbourne, 2005). In order to assist researchers, unified occupational classification systems were built, most recently by Dorn, using task-level analysis of occupations. Dorn’s “occ1990dd” occupation system details 330 occupational classifications that unify the census occupational coding system from 1980 to 2000 with an additional crosswalk to 2010. Correspondingly, Webb associates his AI Exposure Index scores to occupations through Dorn’s system.

In order to ultimately apply Webb’s Index to the BLS Metropolitan and Nonmetropolitan Area Occupation Employment and Wage Estimates Report, multiple occupational system crosswalks were conducted from Dorn’s system to the BLS’ SOC system. First, Dorn’s occupation system was matched to the census occupational system using the occ1990dd to 2010 census crosswalk (Autor, 2015). Then, the 2010 census occupational system coding was associated with the 2010 BLS SOC coding through the census’ 2010 SOC crosswalk (U.S. Census Bureau, 2011). The 2010 BLS SOC coding provided the foundation for the BLS occupational data until 2018 when a major revision of BLS SOC codes required an additional crosswalk to match SOC codes covered in reporting since 2018 (U.S. Census Bureau, 2019). Ultimately, this crosswalk process matched a total of 482 SOC-coded occupations with associated AI Exposure Index scores.

BLS Occupational Data Consolidation
Before the study’s model could be constructed based off the crosswalks, three data procedures were required to prepare the BLS occupational data from the BLS Metropolitan and Nonmetropolitan Area Occupation Employment and Wage Estimates Reports for analysis. The first procedure entailed the consolidation of BLS occupations from 2010-2019 into a uniform set of occupations that could be measured through the entire period of analysis. Similar to the census, the BLS combines, adds and removes occupations frequently from its SOC coding system. Consequently, a multi-year consolidation of BLS occupations from 2010-2019 was required in order to develop a uniform dataset to examine during this nine-year period. Starting with the 2010 BLS report, all reports were exported into excel and occupations were matched each year going forward, first by SOC code then by occupational title through a manual matching process. Unmatched occupations were removed from the dataset and not considered for analysis. Overall, a conservative approach was taken throughout this matching process and occupations without perfect code or job title matches were removed from the dataset.

Ultimately, 680 total reported occupations in 2010 were reduced to 492 through 2019. Then, a second data procedure was conducted to verify that all required employment data was recorded for the occupations. After this step, it was discovered that 118 occupations lacked the required employment data for at least one year. Consequently, these occupations were also removed from the dataset. Lastly, the remaining 374 occupations were matched to the crosswalked AI Exposure Index and 22 were removed due to no match being found. Ultimately, this occupational data consolidation procedure resulted in a final dataset 352 occupations that met all the criteria for examination (Appendix B). In total, 328 occupations were removed from the original 2010 BLS report (Appendix C). Table 2 displays the total occupations removed from the final dataset during each phase of the consolidation procedure.
Table 2

Occupations Removed by Data Consolidation & Cleaning Procedures

<table>
<thead>
<tr>
<th>Data Source</th>
<th>No Occupational Match Found</th>
<th>No Occupational Data Recorded</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-2019 BLS Reports</td>
<td>188</td>
<td>118</td>
</tr>
<tr>
<td>Webb's AI Exposure Index</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Occupational Skill Designations

With the skill-level impact of AI providing potential indications of its skill-replacing or skill-bias technological change, this study applies an occupational skill designation to all 352 occupations examined in the final dataset. For analysis purposes, the designation is binary with high skill distinguished from non-high skill occupations utilizing the average education level of the occupation’s workers as the basis. The minimum education levels of workers for all examined occupations were obtained from the 2022 BLS Educational Attainment Report (U.S. Bureau of Labor Statistics, 2022d). A minimum of a bachelor’s degree is commonly associated with high skill occupations which often require the execution of complex skills such as problem solving, analytical skills, human judgement or other cognitive soft skills (Holzer & Lerman, 2007; Acemoglu & Restrepo, 2018). Utilizing this BLS report, occupations with greater than 50% of their workforce attaining at least a bachelor’s degree were designated as high skill occupations with all other occupations labelled non-high skill. This designation process produced 129 high skill and 223 non-high skill occupations.

Longitudinal Data Analysis - Linear Growth Curve Models

Singer and Willet (2003) identified three required features of any longitudinal study of change: multiple waves of data, a meaningful metric for time and an outcome that changes systematically. The study’s final dataset which includes a consolidated list of 352 occupations with annual employment levels for each occupation from 2010-2019 as well as occupational-
level AI exposure index scores and skill designations meets all of these requirements. Therefore, a growth modeling analysis approach was selected to model this longitudinal data to address the study’s research questions (Bruin, 2006). More specifically, the study constructed multi-level linear growth curve models to assess the change in employment totals over time. Linear growth curve models are the appropriate analysis strategy for this longitudinal dataset because time can be included as a continuous variable predictor. The study’s linear growth curve models are derived from the equation (1) below:

\[Y_{ij} = [g_{00} + g_{10} \text{Year}_{ij} + g_{01} (AI \text{ Exposure}_i + g_{11} (AI \text{ Exposure}_i \times \text{Year}_{ij}))] + [z_0i + z_{1i} \text{Year}_{ij} + e_{ij}] \] (1)

Where:

- \(Y_{ij}\) = employment level for occupation \(i\) at year \(j\)
- \(g_{00}\) = population average employment level in year 0 with AI Exposure 0
- \(g_{10}\) = population average rate of employment level change over time
- \(g_{01}\) = effect of AI Exposure\(_i\) on the population average employment level in year 0
- \(g_{11}\) = effect of AI Exposure\(_i\) on the population average rate of employment level change over time
- \([z_0i + z_{1i} \text{Year}_{ij} + e_{ij}]\) = difference between the observed and expected employment level for occupation \(i\) at year \(j\)

To examine the first research question, the primary model’s outcome variable is the occupational-level employment totals and the predictor variables are Year and the AI Exposure Index scores. For this analysis, the AI Exposure Index scores are clustered into four categories based on score quartiles with Category 1 containing the lowest level scores and Category 4 containing the highest. These categories help facilitate the measurement of the predicted net employment impact of AI at the occupational level. To examine the second research question, the secondary model adds a covariate for high-skill and non-high-skill designations as interaction
variables. The designation segments facilitate the measurement of the predicted type of technological change occurring at the occupational level, skill-replacing or skill-bias. Table 3 outlines the core components of the primary and secondary linear growth curve models.

Table 3

Primary and Secondary Linear Growth Curve Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Research Question</th>
<th>Outcome Variable</th>
<th>Predictor</th>
<th>Predictor</th>
<th>Interaction</th>
<th>Why?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>To what extent, if any, is there an association between changes in San Diego County employment at an occupational level from 2010-2019 and Webb’s AI Exposure Index scores?</td>
<td>Employment totals from 2010-2019 at occupational level</td>
<td>Time</td>
<td>AI Exposure Index scores</td>
<td>N/A</td>
<td>Measure net employment impact of AI</td>
</tr>
<tr>
<td>Secondary</td>
<td>To what extent, if any, is there an association between changes in San Diego County employment at an occupational skill designation level from 2010-2019 and Webb’s AI Exposure Index scores?</td>
<td>Employment totals from 2010-2019 at occupational level</td>
<td>Time</td>
<td>AI Exposure Index scores</td>
<td>Skill Designation</td>
<td>Measure type of tech change occurring (skill-replacing/skill-bias)</td>
</tr>
</tbody>
</table>

In accordance with the overall purpose of the study, additional models were also estimated at the occupational group level in order to enhance the practical applicability of the analysis for local labor market leaders. While San Diego County has a relatively balanced labor market, as detailed in Table 1, other local labor markets could be dominated by specific occupational groups. For example, the production occupational group would have higher employment totals in manufacturing focused labor markets. The office and administrative support occupational group would be over-represented in areas with the presence of large
corporate headquarters. Therefore, it is critical for local labor leaders to understand whether Webb’s AI exposure index has predictive capabilities when applied to these occupational groups. Consequently, each of the 352 occupations within the final dataset were assigned to one of the 22 BLS designated occupational groups that correspond to occupations conducting similar work tasks.
CHAPTER FOUR

FINDINGS

This section will report on the results of the study’s quantitative analysis. All analysis within this section was conducted utilizing the Stata/BE version 17.0 statistical software. The section begins by providing descriptive statistics for all variables relevant for the primary and secondary linear growth curve models. Then, the results of the primary and secondary models are displayed utilizing both tables and figures to document and visualize the employment changes. A supplementary model focused on occupational groups follows the primary and secondary models in order to provide local labor market leaders with a deeper understanding of potential employment changes due to AI exposure when occupations are clustered. Finally, the supplementary model findings drove an exploratory model which explores Webb’s AI exposure index’s predictive capability on a single occupational group of interest. In the end, five separate linear growth curve models were estimated. The intent of this section and its analysis is to fully leverage the final dataset and selected methodology to address the study’s purpose and research questions.

Descriptive Statistics

Before analyzing the model outputs, it is essential to describe the basic features of the key variables in the final dataset. The primary variables utilized for the growth curve models are: Total Employment and AI Exposure Index Score. These variables are further classified into AI Category’s 1-4 as well as High-Skill and Non-High-Skill designations. Once again, the AI categories represent the quartiles of Webb’s AI exposure index scores. The skill designations represent whether or not over 50% of the workforce within an occupation obtained at least a bachelor’s degree. Table 4 displays the characteristics of these key variables.
Table 4

Descriptive Statistics of Key Variables

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>N</th>
<th>mean</th>
<th>sd</th>
<th>min</th>
<th>max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Employment (All)</td>
<td>3,520</td>
<td>2,738</td>
<td>4,676</td>
<td>30</td>
<td>42,820</td>
</tr>
<tr>
<td>AI Category 1 Total Employment</td>
<td>830</td>
<td>3,833</td>
<td>6,705</td>
<td>30</td>
<td>42,820</td>
</tr>
<tr>
<td>AI Category 2 Total Employment</td>
<td>920</td>
<td>2,873</td>
<td>4,794</td>
<td>50</td>
<td>40,850</td>
</tr>
<tr>
<td>AI Category 3 Total Employment</td>
<td>880</td>
<td>2,737</td>
<td>3,970</td>
<td>40</td>
<td>23,620</td>
</tr>
<tr>
<td>AI Category 4 Total Employment</td>
<td>890</td>
<td>1,578</td>
<td>1,667</td>
<td>40</td>
<td>8,590</td>
</tr>
<tr>
<td>High-Skill Total Employment</td>
<td>1,290</td>
<td>1,660</td>
<td>2,055</td>
<td>30</td>
<td>12,090</td>
</tr>
<tr>
<td>Non-High-Skill Total Employment</td>
<td>2,230</td>
<td>3,361</td>
<td>5,569</td>
<td>40</td>
<td>42,820</td>
</tr>
<tr>
<td>AI Exposure Index Score (All)</td>
<td>3,520</td>
<td>49.64</td>
<td>30.94</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>AI Category 1 Exposure Index Score</td>
<td>830</td>
<td>9.06</td>
<td>7.59</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>AI Category 2 Exposure Index Score</td>
<td>920</td>
<td>33.86</td>
<td>7.87</td>
<td>23</td>
<td>47</td>
</tr>
<tr>
<td>AI Category 3 Exposure Index Score</td>
<td>880</td>
<td>65.22</td>
<td>9.72</td>
<td>48</td>
<td>80</td>
</tr>
<tr>
<td>AI Category 4 Exposure Index Score</td>
<td>890</td>
<td>88.39</td>
<td>6.21</td>
<td>81</td>
<td>100</td>
</tr>
<tr>
<td>High-Skill AI Exposure Index Score</td>
<td>1,290</td>
<td>55.19</td>
<td>32.24</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Non-High-Skill AI Exposure Index Score</td>
<td>2,230</td>
<td>46.43</td>
<td>29.69</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

The descriptive statistics show the longitudinal data analysis approach produces 3,520 observations within the dataset for the consolidated Total Employment and AI Exposure Index Score variables. This is the result of 352 occupations with 10 data points for each year from 2010-2019. It is important to note that the data points for the Total Employment variable are dynamic meaning that the employment levels can change each year during the period of analysis. However, the AI Exposure Index Score variable is static for each occupation throughout the period of analysis. The AI categories descriptive statistics show that the occupational-level observations are fairly balanced throughout the four categories with a range of 830-920. AI Category 2 which comprises occupations with AI exposure index scores between 23-47 has the largest number of observations (N = 920) and AI Category 1 with AI exposure index scores of 21 and below have the lowest number (N = 830). While the minimum levels for the Total Employment variable stay fairly consistent across categories, the maximum levels vary significantly from 8,590-40,850. The Non-High-Skill designation (N = 2,230) has significantly more observations than the High-Skill designation (N = 1,290). However, both designations
contain occupations with a full range of AI exposure index scores ranging from 1-100. Non-High-Skill occupations ($Max = 42,820$) also contain occupations with higher employment levels than High-Skill ($Max = 12,090$). It is important to note that the mean AI exposure index score for High Skill occupations ($Mean = 55.19$) is closely comparable to Non-High Skill ($Mean = 46.43$) indicating relatively balanced AI exposure between High-Skill and Non-High-Skill occupations.

Figure 2

Histogram of Total Employment 2010-2019

Figure 2 shows the distribution of the consolidated Total Employment variable representing all 3,520 observations from 2010-2019. The histogram has a heavy right skewed distribution with limited outliers above 15,000. The distribution is unique in that the majority of the observations have employment totals within the first bin of the histogram. This corresponds to the median ($Median = 1,110$) for the consolidated Employment Total variable in Table 4.
Figure 3 shows that the consolidated AI Exposure Index Score variable has a unimodal distribution with the highest peak at the beginning of the range and lesser peaks between scores of 20-40 and 80-100. The distribution is fairly balanced with no apparent outliers.

Primary Model

A linear growth curve model was constructed with the outcome variable of Total Employment from 2010-2019 for each occupation and the predictor variables of Year and AI Exposure Index Score. For analysis, AI Exposure Index Score was segmented into four exposure level categories as previously noted. Table 5 displays the primary growth curve model output.

Table 5

Primary Growth Curve Model Output
Figure 4 displays the primary model predicted growth curves with 95% confidence intervals from 2010-2019.

Figure 4

Primary Model Predicted Growth Curves 2010-2019
The primary model contains 3,520 observations across 352 occupations. The model output shows the model is statistically significant \((p < .00)\). However, the significance of intercept and slope coefficients vary across the model’s output. Statistical significance \((p < .05)\) was found in five coefficients with three coefficients not meeting this threshold. AI Category 1 was the only category that had significance in both its intercept and slope coefficients. AI Category 4 is the only category with a slope coefficient that did not meet statistical significance. The highest significant slope coefficient is AI Category 3 (23.04) and all other significant slope coefficients demonstrated positive measurements indicating increasing levels of employment over the period of analysis. Correspondingly, the highest significant intercept coefficient is AI Category 1 (3,659) with AI Category 4 (-2,239) representing the lowest significant intercept output. The confidence intervals of the model’s growth curves are broad and overlap consistently across the period of analysis (Figure 5).

Secondary Models
Two linear growth curve models were constructed by segmenting the dataset in the primary model by occupational-level high-skill and non-high-skill designations. Table 6 shows the model outputs for both high-skill and non-high-skill occupations for the period of analysis.

Table 6

Secondary Growth Curve Models Outputs

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>High-Skill Total Employment</th>
<th>Non-High-Skill Total Employment</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI Category 2</td>
<td>1,141**</td>
<td>-2,248**</td>
</tr>
<tr>
<td></td>
<td>(560.6)</td>
<td>(964)</td>
</tr>
<tr>
<td></td>
<td>42.72 - 2,240</td>
<td>-4,138 - -358.7</td>
</tr>
<tr>
<td>AI Category 3</td>
<td>1,116**</td>
<td>-2,155**</td>
</tr>
<tr>
<td></td>
<td>(494)</td>
<td>(1041)</td>
</tr>
<tr>
<td></td>
<td>148.2 - 2,085</td>
<td>-4,195 - -115.3</td>
</tr>
<tr>
<td>AI Category 4</td>
<td>784.6</td>
<td>-3,717***</td>
</tr>
<tr>
<td></td>
<td>(479.3)</td>
<td>(1070)</td>
</tr>
<tr>
<td></td>
<td>-154.7 - 1,724</td>
<td>-5,814 - -1,620</td>
</tr>
<tr>
<td>Year</td>
<td>5.017</td>
<td>54.90***</td>
</tr>
<tr>
<td></td>
<td>(9.138)</td>
<td>(10.15)</td>
</tr>
<tr>
<td></td>
<td>-12.89 - 22.93</td>
<td>35.00 - 74.80</td>
</tr>
<tr>
<td>AI Category 1:Year</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AI Category 2:Year</td>
<td>42.05***</td>
<td>9.73</td>
</tr>
<tr>
<td></td>
<td>(13.64)</td>
<td>(13.62)</td>
</tr>
<tr>
<td></td>
<td>15.32 - 68.78</td>
<td>-16.97 - 36.43</td>
</tr>
<tr>
<td>AI Category 3:Year</td>
<td>60.02***</td>
<td>4.405</td>
</tr>
<tr>
<td></td>
<td>(12.02)</td>
<td>(14.71)</td>
</tr>
<tr>
<td></td>
<td>36.47 - 83.58</td>
<td>-24.42 - 33.23</td>
</tr>
<tr>
<td>AI Category 4:Year</td>
<td>46.99***</td>
<td>-35.99**</td>
</tr>
<tr>
<td></td>
<td>(11.66)</td>
<td>(15.12)</td>
</tr>
<tr>
<td></td>
<td>24.14 - 69.84</td>
<td>-65.62 - -6.353</td>
</tr>
<tr>
<td>Constant</td>
<td>681.8</td>
<td>5,095***</td>
</tr>
<tr>
<td></td>
<td>(375.6)</td>
<td>(718.5)</td>
</tr>
<tr>
<td></td>
<td>-54.45 - 1,418</td>
<td>3,686 - 6,503</td>
</tr>
<tr>
<td>Observations</td>
<td>1290</td>
<td>2230</td>
</tr>
<tr>
<td>Number of groups</td>
<td>129</td>
<td>223</td>
</tr>
<tr>
<td>Prob > chi2</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05

Figure 5 displays the secondary model predicted growth curves for high-skill occupations with 95% confidence intervals from 2010-2019.

Figure 5
Figure 6 displays the secondary model predicted growth curves for non-high-skill occupations with 95% confidence intervals from 2010-2019.
Both secondary linear growth curve models were significant \((p < .00)\). The high-skill and non-high-skill models analyzed 1,290 and 2,230 observations respectively. For the high-skill model, five coefficients demonstrated statistical significance with AI Category 1 the only slope coefficient not meeting the significance threshold, and the AI Category 1 and AI Category 4 intercept coefficients also not meeting the threshold. AI Category 2 (1,141) had the highest significant intercept and AI Category 3 (60.02) recorded the highest significant slope value. Once again, all significant slope coefficients had positive values indicating predicted employment growth over the period of analysis for high-skill occupations in AI Categories 2-4. For the non-high-skill model, six coefficients were significant including all the intercept values while the AI Category 2 and AI Category 3 slope coefficients lacked significance. AI Category 1 had the highest significant intercept coefficient (5,095) and slope coefficient (54.90). Correspondingly, AI Category 4 represented the lowest significant intercept (-3,717) and slope coefficient (-35.99) values. While both slope coefficients indicate employment growth during the
period of analysis, the higher exposed non-high-skill occupations in AI Category 4 showed lower growth rates than the least exposed non-high-skill occupations in AI Category 1. Similar to the primary model, the secondary models’ predicted growth curve confidence intervals are broad and overlap consistently throughout the period of analysis for both high-skill and non-high-skill occupations (Figure 5; Figure 6).

Supplemental Model: Highest AI Exposure Occupations by Occupational Group

The purpose of this study is to understand the potential impact of AI at a local labor market level, San Diego County. In order to measure the potential impact of AI on San Diego County more broadly, an additional linear growth curve model was constructed leveraging the SOC system occupational groups instead of individual occupations. Total Employment remained the outcome variable for this analysis and the model examined only the occupational groups with occupations associated with AI Category 4, the highest quartile AI exposure index scores. Once again, the period of analysis remained from 2010-2019. Table 7 shows the occupational group model outputs.

Table 7

Occupational Groups Growth Curve Model Outputs
<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Total Employment ALcategory 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupation Group 13</td>
<td>-688.9</td>
</tr>
<tr>
<td></td>
<td>(881.2)</td>
</tr>
<tr>
<td>Occupation Group 15</td>
<td>220.7</td>
</tr>
<tr>
<td></td>
<td>(1246)</td>
</tr>
<tr>
<td>Occupation Group 17</td>
<td>-586</td>
</tr>
<tr>
<td></td>
<td>(772.2)</td>
</tr>
<tr>
<td>Occupation Group 19</td>
<td>-888.9</td>
</tr>
<tr>
<td></td>
<td>(822.8)</td>
</tr>
<tr>
<td>Occupation Group 27</td>
<td>-1232</td>
</tr>
<tr>
<td></td>
<td>(1246)</td>
</tr>
<tr>
<td>Occupation Group 29</td>
<td>-1,099</td>
</tr>
<tr>
<td></td>
<td>(902)</td>
</tr>
<tr>
<td>Occupation Group 37</td>
<td>1,047</td>
</tr>
<tr>
<td></td>
<td>(1,069)</td>
</tr>
<tr>
<td>Occupation Group 43</td>
<td>-4,401</td>
</tr>
<tr>
<td></td>
<td>3,308</td>
</tr>
<tr>
<td>Occupation Group 45</td>
<td>987</td>
</tr>
<tr>
<td></td>
<td>(950.3)</td>
</tr>
<tr>
<td>Occupation Group 47</td>
<td>-2,980 - 904.3</td>
</tr>
<tr>
<td></td>
<td>(1599)</td>
</tr>
<tr>
<td>Occupation Group 49</td>
<td>-1,779 - 529.4</td>
</tr>
<tr>
<td></td>
<td>(29.2)</td>
</tr>
<tr>
<td>Occupation Group 51</td>
<td>1,348</td>
</tr>
<tr>
<td></td>
<td>(1,069)</td>
</tr>
<tr>
<td>Occupation Group 53</td>
<td>-4,311***</td>
</tr>
<tr>
<td></td>
<td>(1669)</td>
</tr>
<tr>
<td>Occupation Group 11:Year</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>(10)</td>
</tr>
<tr>
<td>Occupation Group 13:Year</td>
<td>1.318</td>
</tr>
<tr>
<td></td>
<td>(24.18)</td>
</tr>
<tr>
<td>Occupation Group 15:Year</td>
<td>42.73</td>
</tr>
<tr>
<td></td>
<td>(14.70)</td>
</tr>
<tr>
<td>Occupation Group 17:Year</td>
<td>-24.29 - 109.9</td>
</tr>
<tr>
<td></td>
<td>(21.52)</td>
</tr>
<tr>
<td>Occupation Group 19:Year</td>
<td>-124.8***</td>
</tr>
<tr>
<td></td>
<td>(21.58)</td>
</tr>
<tr>
<td>Occupation Group 27:Year</td>
<td>-77.18**</td>
</tr>
<tr>
<td></td>
<td>(14.13)</td>
</tr>
<tr>
<td>Occupation Group 29:Year</td>
<td>-144.1 - 30.19</td>
</tr>
<tr>
<td></td>
<td>(24.75)</td>
</tr>
<tr>
<td>Occupation Group 37:Year</td>
<td>18.94</td>
</tr>
<tr>
<td></td>
<td>(44.14)</td>
</tr>
<tr>
<td>Occupation Group 43:Year</td>
<td>-168.5 - 4.579</td>
</tr>
<tr>
<td></td>
<td>(24.89)</td>
</tr>
<tr>
<td>Occupation Group 45:Year</td>
<td>-176.7 - 72.85</td>
</tr>
<tr>
<td></td>
<td>(30.15)</td>
</tr>
<tr>
<td>Occupation Group 47:Year</td>
<td>-62.72**</td>
</tr>
<tr>
<td></td>
<td>(26.49)</td>
</tr>
<tr>
<td>Occupation Group 49:Year</td>
<td>-143.0 - 24.85</td>
</tr>
<tr>
<td></td>
<td>(18.43)</td>
</tr>
<tr>
<td>Occupation Group 51:Year</td>
<td>-179.0***</td>
</tr>
<tr>
<td></td>
<td>(44.14)</td>
</tr>
<tr>
<td>Occupation Group 53:Year</td>
<td>-248.9***</td>
</tr>
<tr>
<td></td>
<td>(44.14)</td>
</tr>
<tr>
<td>Constant</td>
<td>2,236***</td>
</tr>
<tr>
<td></td>
<td>(718.5)</td>
</tr>
<tr>
<td>Observations</td>
<td>890</td>
</tr>
<tr>
<td>Number of groups</td>
<td>89</td>
</tr>
<tr>
<td>Prob > chi2</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05
Figure 7 displays the occupational groups model predicted growth curves for AI Category 4 occupations from 2010-2019.

Figure 7

Occupational Groups Model Predicted Growth Curves For AI Category 4 Occupations 2010-2019

From the twenty-two total occupational groups, fourteen groups had occupations in AI Category 4 and therefore were included in this analysis. Holistically, the model analyzed 890 observations representing roughly 25% of the study’s total observations, and was significant ($p < .00$). While only two intercept coefficients were significant, eleven slope coefficients met the significance threshold. Occupational Group 53 (Transportation and Material Moving Occupations) and Occupational Group 11 (Farming, Fishing and Forestry Occupations) represented the highest (4,331) and lowest (2,236) intercept coefficient values respectively. With regard to slope coefficients, Occupational Group 11 (Management Occupations) had the highest
(98.85) significant value and Occupational Group 53 measured the lowest (-248.9) significant value. The output for Occupational Group 53 demonstrates a predicted overall decrease in employment during the period of analysis for AI Category 4 occupations within the group.

Similar to the primary and secondary models, the occupational groups model has predicted growth curve confidence intervals that overlap consistently. Additionally, it is critical to note that the confidence intervals for some occupational groups range below zero total employment which would not be a valid employment measurement.

Exploratory Model: Transportation and Material Moving Occupational Group

(Occupational Group 53)

Based on the supplemental analysis model, an exploratory linear growth curve model was constructed for Occupational Group 53 due to its substantial negative slope coefficient (-248.9) indicating potential predicted job loss for these occupations within AI Category 4. This exploratory model expanded the supplementary model by including all occupations within Occupational Group 53 in each AI category for analysis. The purpose of the model is to further understand the potential net employment impact of AI on all transportation and material moving occupations in San Diego County. Total Employment continued to be the outcome variable with Year and the categorized AI Exposure Index Score utilized as the predictors. Table 8 shows the model outputs for the transportation and material moving occupational group.

Table 8

Occupational Group 53 Exploratory Growth Curve Model Outputs
Figure 8 displays the Occupational Group 53 exploratory model predicted growth curves from 2010-2019.

Figure 8

Occupational Group 53 Model Predicted Growth Curves 2010-2019
This model analyzed 90 observations for the 9 occupations comprising Occupational Group 53, representing roughly 3% of total occupations. Overall, the model was significant ($p < .00$). However, only two coefficients were measured as significant, the slope coefficients for AI Category 3 (310.7) and AI Category 4 (-232.3). Building on the supplementary analysis, the significant slope coefficients not only reinforce the potential predicted employment loss in AI Category 4 occupations within this group during the period of analysis but also show predicted employment growth outside of AI Category 4. Consequently, it is less likely that AI exposure is associated with consistent employment loss throughout all 9 occupations within Occupational Group 53. The confidence intervals of the exploratory model show the most extreme overlap in comparison to the previous models which is driven by the consistently high standard error levels found in the model output (Figure 8).

In summary, five total linear growth curve models were constructed and executed for the primary, secondary, supplementary and exploratory areas of analysis. All models were found to
be statistically significant but coefficient significance varied extensively between the models with the primary and secondary models containing the highest proportion of significant coefficients. A commonality among all the models was substantial standard errors across the model coefficients which was visually apparent in the predicted linear growth curves confidence intervals. Overall, the models provide a broad perspective on the final dataset by analyzing all occupations, a majority of occupational groups and finally a deeper dive into a single occupational group.
CHAPTER FIVE
DISCUSSION OF FINDINGS AND CONCLUSIONS

This final section will focus on connecting the study’s purpose, research questions and exploratory methodology to the findings of the longitudinal data analysis as well as fitting those findings within the established AI employment literature. The section will begin with the interpretation of the results of the primary and secondary models in relation to the study’s research questions. Additional interpretation will also be conducted to associate the study’s findings with the relevant literature. Then, the supplementary and exploratory models will be interpreted to further support the overall purpose of the study and its implications for San Diego County’s local labor market leaders. This section will then summarize the limitations of the study and all procedures utilized to mitigate the limitations. Lastly, this section will discuss recommendations for future research.

Research Question #1: To what extent, if any, is there an association between changes in San Diego County employment at an occupational level from 2010-2019 and Webb’s AI Exposure Index scores?

The primary model produced an overall positive net employment impact throughout the AI Categories with significance during the period of analysis. As AI exposure levels grew, predicted employment levels also grew as indicated by the most exposed occupations, AI Category 3, recording the highest significant slope coefficient (23.04). Consequently, it can be asserted from the primary model output that Webb’s AI exposure index is currently positively associated with predicted employment growth. It is crucial to also note the high standard errors of the model coefficients which produced wide and overlapping confidence intervals for the employment growth curves (Figure 4). For example, the slope coefficients for AI Category 2
(21.76) and AI Category 3 (23.04) are relatively similar and both have wide confidence intervals, AI Category 2 (1.837 - 41.68) and AI Category 3 (2.909 - 43.18), due to high standard errors. With such a large range of potential outputs, future measurements utilizing the primary model could produce varied or opposing findings. Consequently, the study’s level of conviction in the model’s findings for this period of analysis is relatively low.

The primary model’s finding of a positive net employment impact during the period of analysis aligns with the established technological change employment theory as well as several studies within AI employment theory. Specifically, the finding directionally aligns with McKinsey’s (2018) prediction that positive net employment impact could occur by 2030 from AI and similar automation technologies. Nedelkoska & Quintini (2018) and Muro, Maxim & Whiton (2019) also assert the potential for AI to be a job creator instead of job destroyer. However, this finding currently conflicts with Webb’s prediction that there will be a positive association between the AI exposure index scores and employment loss. It is critical to note that Webb based his prediction on a thirty-year period of analysis which is significantly longer than the scope of this study. Given the current differences in the periods of analysis between the studies and the elevated standard errors within the primary model, it is precipitous to make any definitive assertion against Webb’s prediction at this time.

Research Question #2: To what extent, if any, is there an association between changes in San Diego County employment at an occupational skill designation level from 2010-2019 and Webb’s AI Exposure Index scores?

This study’s second research question explores the potential type of technological change that is occurring in San Diego County due to AI. Both secondary models utilize the interaction variable Skill Designation to segment the data into 129 high-skill occupations and 223 non-high-
skill occupations. For high-skill occupations, an examination of the secondary model output and growth curves provides early indications of potential skill-bias change occurring with high-skill occupations in each AI category demonstrating predicted employment growth and the most exposed occupations in AI Category 3 and AI Category 4 recording the strongest positive slope coefficients at significant levels. Consequently, it can be asserted that AI exposure is currently positively associated with high-skill employment. In contrast, the non-high-skill occupations’ model output shows a large negative difference at a significant level between the most exposed occupations, AI Category 4, and the least exposed occupations, AI Category 1. While AI Category 4’s growth curve is still minimally positive, this finding could be a potential early indication that AI exposure is negatively associated with employment growth for non-high-skill occupations.

Overall, the findings in the secondary models provide initial support for a skill-bias technological change occurring within San Diego County due to AI. Although the critical coefficients for this assessment were statistically significant, it is vital to consider the standard errors throughout the models when assessing the findings. As the growth curves (Figure 5; Figure 6) show, there is substantial overlap within the confidence intervals among most of the AI categories. For the high-skill model, AI Category 2 and AI Category 4 have similar slope coefficients, 42.05 and 46.99 respectively, with fairly similar confidence intervals, AI Category 2 (15.32 - 68.78) and AI Category 4 (24.14 - 69.84), A shift to the upper bound of the interval for AI Category 2 and lower bound of the interval for AI Category 4 would reduce the evidence for a potential skill-bias change occurring due to AI. Therefore, the possibility exists that the models’ assertions could change due to movements within the confidence intervals.
Both secondary models’ support for a potential skill-bias change aligns with a limited consensus that is building in AI employment theory as well as recent studies within technological change employment theory that focus on the third industrial revolution. Specifically, the finding aligns with AI employment task-based literature such as Frey and Osborne (2017), Duckworth, Graham & Osborne (2019), and Nedelkoska & Quintini (2018). However, the skill-bias support challenges Webb’s assertion that AI will negatively impact predominately high-skill occupations indicating potential skill-replacing change. Once again, it is critical to call out the differences in the periods of analysis between this study and Webb’s research when comparing the findings to Webb’s predictions. However, this study did examine actual occupational-level employment data in relation to Webb’s index which strengthens the validity of its findings.

Purpose of the Study: This exploratory study sought to build a generalizable model that could be applied to any local labor market within the U.S. while providing local leaders with the necessary understanding of their labor market’s exposure to AI.

In regard to the purpose of the study, the supplemental and exploratory models’ findings will be analyzed to examine the potential impact of AI more fully on the study’s local labor market. Then, the generalizability of the study’s models and findings will be assessed holistically based on commonly accepted criteria. The study showed indications of positive net employment impacts and skill-bias changes associated with AI in San Diego County during the period of analysis. The supplementary model provided a more detailed examination of employment impact through clustering by segmenting the occupations into occupational groups. Occupations with the highest AI exposure, AI Category 4, were then selected for employment level analysis. The model output produced ten positive growth curves implying potential job growth and four negative growth curves implying potential job loss.
The four negative slope coefficients were all statistically significant and associated with Occupational Group 19 (Life, Physical and Social Science Occupations), Occupational Group 43 (Office and Administrative Support Occupations), Occupational Group 49 (Installation, Maintenance and Repair Occupations) and Occupational Group 53 (Transportation and Material Moving Occupations). Based on the BLS labor market breakdown (Table 1), the percentage of San Diego County’s employment for these occupational groups is 1.9%, 11.7%, 3.2%, and 6.4% respectively. Consequently, a potential negative association between AI exposure and employment totals was identified within occupational groups that make up 23.2% of San Diego County’s total employment. It is critical to emphasize that this supplementary model only analyzed the highest exposed occupations in AI Category 4. Therefore, a broader analysis of the model’s findings should be conducted across diverse exposure levels to assess the applicability of the finding more thoroughly across all occupations within the four occupational groups identified.

To provide a foundation for this broader analysis, a deeper dive into this finding was conducted in the exploratory model which selected the occupational group with the highest negative growth curve, Occupational Group 53, for further examination. Instead of only analyzing AI Category 4 occupations, occupations at all exposure levels within this group were included in this model in order to assess the relationship more comprehensively between Webb’s AI exposure index and employment changes at a group level. The inclusion of all occupations produced a model with a significant positive growth curve, AI Category 3, indicating predicted employment growth. This finding suggests that employment loss could be potentially isolated to only the most exposed occupations in AI Category 4 within this occupational group. This assertion was further reinforced by the significant negative growth curve of AI Category 4 within
the model. It is important to note that AI Category 4 only contained one occupation though, occupational code 53-7064 titled “Pickers and Packagers, Hand”. This non-high-skill occupation recorded an AI exposure index score of 92 and experience an actual decrease of 2,030 in total employment from 7,230 in 2010 to 5,200 in 2019. It is critical to note however that the exploratory model demonstrated elevated standard errors throughout the model’s output and only reached statistical significance for 2 of 8 coefficients.

There are a few key takeaways for San Diego County’s labor market leaders based on the findings from this study’s primary, secondary, supplementary, and exploratory models. First, with regard to the overall net employment impact of AI, this study suggests that leaders should focus on monitoring employment levels rather than taking any specific actions at this time. It appears too early to identify a specific direction for potential broad-based reskilling or labor market shifts. It is recommended to consistently review the annual BLS employment reports from 2022 onward to reassess the study’s positive net employment impact finding. Second, the study’s finding associating AI with skill-bias technology change can be utilized by San Diego’s labor market leaders to reinforce the importance of upskilling programs for non-high-skill workers. The goal of these upskilling programs should be to transition workers in the potentially threatened non-high-skill occupations to higher-skilled occupations less associated with potential job loss. Lastly, this study identifies four occupational groups and one specific occupation in the San Diego County labor market which have early indications of potential job loss due to AI. Leaders can leverage this finding to possibly begin planning for labor shifts out of these occupational groups into growing occupational groups in the near term. The “Pickers and Packagers, Hand” occupation specifically could be a starting point for leaders to initiate
reskilling or preferably upskilling programs for the thousands of San Diego County workers in that occupation.

An additional purpose of this exploratory study was to assess whether the models’ findings could be generalizable to other local labor markets. To examine generalizability, it is critical to assess both the study’s methodology and findings. From a methodology perspective, the study’s final dataset contained 352 occupations, 52% of all San Diego County occupations, with more than one occupation in all 22 major occupational groups. Consequently, the final dataset is assumed to be a valid representation of the San Diego County labor market. Due to the uniformity of the BLS employment classifications and data, the study’s final dataset also represents a reliable foundation for analysis across different local labor markets. Additionally, Webb’s AI Exposure Index and the BLS-based occupational skill designations will not change across different local labor markets. Therefore, the study’s methodology is reasonably generalizable.

However, the findings from the study’s models must be scrutinized heavily in regard to precision. While all models within the study were found to be statistically significant the significance of the intercept and slope coefficients varied dramatically both within and across models. Numerous coefficients throughout the study did not reach the significance threshold which reduces the validity of the findings. The standard errors for the coefficients were also consistently elevated throughout the model outputs. The visualizations of the confidence intervals of the growth curves clearly illustrate the impact of the elevated standard errors with a large overlap in the outcome variable curves. This overlap substantially lowers the overall validity and reliability of the study’s findings which correspondingly reduces its precision. Overall, the study’s methodology could be reasonably generalized across local labor markets but
Limitations

This study seeks to provide local labor market leaders with an objective-based model to assess their local labor market’s exposure to current and future AI-driven technologies. Consequently, it is critical to note the limitations of this exploratory study’s design and methodology for their situational awareness. The study’s most significant limitation is the increasingly dynamic and evolving nature of AI. As a still emerging technology, AI cannot be regarded as a constant yet and it is still uncertain where and how its applications will impact the future of work. Therefore, Webb’s AI Exposure Index’s relevance must be consistently scrutinized based on its patent-level foundation. Undoubtedly, substantial new AI patents have been filed since Webb’s research was first published in 2019. It is reasonable to contend that these new patent filings would change Webb’s AI Exposure Index scoring and therefore augment the final dataset of this study impacting the validity of the study’s findings. Due to this limitation, it is important for local labor market leaders to utilize this study’s findings as one of several inputs to understand AI’s potential impact rather than an absolute solution. Through triangulation with other research literature and current news, leaders can build the necessary context required to adequately plan for the age of AI.

This exploratory study's findings face another limitation in terms of validity due to its heavy reliance on Webb’s AI exposure index. The study employs longitudinal analysis techniques which apply the static AI exposure index scores to nine years of employment data at an occupational level. While Webb’s index is based on longitudinal analysis, the index itself is not longitudinal in nature. However, the occupational employment totals from 2010-2019
represent a valid longitudinal dataset. To enhance the precision of the AI exposure index, it would have been preferable to have annual scoring for each occupation throughout the period of analysis rather than a single point-in-time index score in 2019. Additionally, Webb’s index is the sole AI exposure measurement instrument utilized in the study’s analysis. This is a limitation to the reliability of the study’s findings because Webb just recently published this index (2019) and it has not undergone extensive scholarly peer review. Optimally, multiple AI exposure indexes that mapped back to the occupations in the final dataset would have been included within the study’s design. Consequently, the accuracy of the study's findings and their generalizability need to be carefully considered. Although Webb’s AI exposure index has its limitations, other instruments were considered during the study’s design and it was deemed the most suitable mechanism for analyzing the final dataset and addressing the research questions of the study.

The robustness of this exploratory study must also be acknowledged as a limitation due to the condensed time span of the period of analysis, 2010-2019. The limited consistency of BLS reporting imposed a data constraint that resulted in only nine years of BLS employment data in the final dataset. While nine years may provide some insights, it is a relatively short period of analysis to comprehensively analyze the impact of a technology on labor markets. In comparison, Webb employed a thirty-year period of analysis to validate his AI exposure methodology. Given the study's truncated analysis period and the recency of AI applications in the labor market, it is unlikely to identify significant impacts of AI at this time. However, to address this limitation, the study exclusively utilized publicly available data for the analysis. This approach allows for simpler replication facilitating future research that includes a more extensive range of employment data, thereby enhancing the robustness of the findings.
Lastly, it is important to note the complexity and data bias involved in the construction of the final dataset utilized for analysis. First, the multiple crosswalks executed to apply Webb’s AI Exposure Index to the BLS employment data necessitated reliance on multiple researcher and organizational methodologies. The manual nature of the crosswalks also increased the potential for human error during documentation. Second, the consolidation process of the BLS occupations was also conducted manually and required consistent human judgment. While the process produced a final dataset of 352 occupations to examine, it is critical to note that 328 occupations were excluded from analysis because either their occupational code could not be matched or aspects of their data were not recorded between 2010-2019. Therefore, there are replicability and completeness limitations within the final dataset. To address these limitations, this study makes every effort to document for the reader not only the data being used for testing but also the data that was excluded from examination.

Implications For Future Research

While this study has limitations, a core benefit of its exploratory approach is that it expands the knowledge base of this topic and opens up new directions for research. Specifically, the study developed a new methodology and produced several initial findings that can be foundational to future research efforts. Additional research can be instrumental in improving the validity of the methodology and findings as well as assessing the robustness of the overall study. Building on this study as a foundation, scholars can continue to provide local labor market leaders with critical new insights to properly prepare for the coming age of AI.

In terms of methodological considerations, future research should aim to expand the period of analysis and incorporate additional relevant instruments to enhance the study's validity. As the labor market gradually normalizes following the Covid-19 pandemic, a more consistent
and reliable dataset from the BLS will become available which offers valuable data to include in future analysis. Furthermore, with the increasing availability and adoption of AI applications impacting the workforce, it is crucial to incorporate these developments into future studies. By combining larger employment datasets with broader AI adoption, the likelihood of identifying meaningful trends is heightened which should enable researchers to obtain more precise measurements from the study's models. To further strengthen the study's methodological approach, it is recommended to also incorporate additional empirically driven instruments that measure the impact of AI on employment. While Webb's patent-based index serves as one approach to quantify AI's impact at the occupational level, recent research from institutions like the Massachusetts Institute of Technology (MIT) offers alternative methodologies (Acemoglu, D.; Autor, D.; Hazell, J.; Restrepo, P., 2022). Integrating these evolving alternative approaches with Webb's AI Exposure Index has the potential to significantly enhance the overall robustness of the study's methodology.

Given the limited amount of existing research on AI employment theory focused on local labor markets, direct comparisons to this study's findings are currently limited. Therefore, future research should aim to expand upon these findings to conduct a more comprehensive assessment of their validity. By applying the methodology used in this study to other local labor markets, a broader range of empirical evidence can be accumulated to assess AI's net employment impact, type of technological change, and most affected occupations. It is important to diversify the research across various regions in the United States to identify potential regional trends that may be occurring. Additionally, localized international studies could provide valuable insights into the global impact of AI. Alternatively, the study's findings also offer opportunities for a deeper analysis of the labor market in San Diego County. In the supplementary model, negative growth
curves were observed for four occupational groups with high AI exposure but this study only analyzed one of those groups (Occupational Group 53) in its exploratory model. Analyzing the other three occupational groups would provide additional insights into potential occupations that exhibit indications of job loss. By either expanding the scope of local labor markets studied or conducting more in-depth analyses of San Diego County, the study's findings can be further validated and more valuable empirical knowledge can be provided to local labor market leaders.

The current data bias within this study could also be reduced during future research in order to potentially enhance the methodology’s generalizability and the models’ precision. During the data cleaning and consolidation process, 328 occupations were removed from the final dataset. Future studies could develop a more scientifically rigorous method to add or remove occupations. A benefit of longitudinal data analysis is that not all observations of an outcome variable need to be recorded to conduct linear growth curve analysis. Consequently, less occupations with incomplete employment totals could be removed increasing the total number of occupations in the final dataset for analysis. The inclusion of these occupations can assist in testing the validity of the methodology and findings of this study.

Conclusion

This exploratory study addresses the research questions and fills a crucial knowledge gap in AI employment theory by introducing a novel methodology for evaluating AI exposure at the local labor market level. Applying this new methodology to the San Diego County labor market from 2010-2019 yielded several noteworthy findings. First, the primary model demonstrated an overall positive association between employment changes and AI exposure throughout multiple levels of Webb's AI exposure index. Second, the secondary models provided preliminary evidence of potential skill-biased changes with non-high-skill occupations exhibiting slower
employment growth compared to high-skill occupations at similar levels of Webb’s AI exposure index. Lastly, the supplementary and exploratory models identified specific occupational groups and occupations that displayed potential early indications of employment loss attributable to AI exposure. While these findings are novel at the local labor market level, it is important to emphasize that the lack of consistency in significance and the presence of high standard errors in the model coefficients hinder precision and impede generalizability beyond San Diego County at this point in time. However, the new methodology holds high potential for application to other local labor markets which offers opportunities for further research and analysis.

Circling back to the fundamental purpose of this study, its methodology and findings provide local labor market leaders with valuable models and sets of insights to begin preparing for the age of AI. Based on this study’s findings, there still appears to be time for leaders to monitor and assess AI’s impact in order to properly build programs to address any upcoming labor demand shocks. By utilizing publicly available data, the replicability of the study was greatly enhanced which offers leaders the opportunity to continue to add annual employment totals to the models. By broadening the period of analysis, future models can test the reliability and validity of the study’s findings while increasing its overall robustness. Consequently, local labor market leaders are highly encouraged to continue to build on this study to assess their local labor market’s exposure to AI going forward.
REFERENCES

APPENDIX A

Webb’s AI Exposure Index

<table>
<thead>
<tr>
<th>occ1990dd Code</th>
<th>Occupation Title (occ1990dd)</th>
<th>Exposure Index Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Purchasing agents and buyers of farm products</td>
<td>100</td>
</tr>
<tr>
<td>35</td>
<td>Construction inspectors</td>
<td>100</td>
</tr>
<tr>
<td>45</td>
<td>Metallurgical and materials engineers</td>
<td>100</td>
</tr>
<tr>
<td>48</td>
<td>Chemical engineers</td>
<td>100</td>
</tr>
<tr>
<td>58</td>
<td>Marine engineers and naval architects</td>
<td>100</td>
</tr>
<tr>
<td>69</td>
<td>Physicists and astronomers</td>
<td>100</td>
</tr>
<tr>
<td>74</td>
<td>Atmospheric and space scientists</td>
<td>100</td>
</tr>
<tr>
<td>87</td>
<td>Optometrists</td>
<td>100</td>
</tr>
<tr>
<td>203</td>
<td>Clinical laboratory technologies and technicians</td>
<td>100</td>
</tr>
<tr>
<td>359</td>
<td>Dispatchers</td>
<td>100</td>
</tr>
<tr>
<td>455</td>
<td>Pest control occupations</td>
<td>100</td>
</tr>
<tr>
<td>494</td>
<td>Supervisors, forestry and logging workers</td>
<td>100</td>
</tr>
<tr>
<td>543</td>
<td>Elevator installers and repairers</td>
<td>100</td>
</tr>
<tr>
<td>694</td>
<td>Water and sewage treatment plant operators</td>
<td>100</td>
</tr>
<tr>
<td>695</td>
<td>Power plant operators</td>
<td>100</td>
</tr>
<tr>
<td>739</td>
<td>Knitters, loopers, and toppers textile operatives</td>
<td>100</td>
</tr>
<tr>
<td>824</td>
<td>Locomotive operators: engineers and firemen</td>
<td>100</td>
</tr>
<tr>
<td>736</td>
<td>Typesetters and compositors</td>
<td>99</td>
</tr>
<tr>
<td>743</td>
<td>Textile cutting and dyeing machine operators</td>
<td>98</td>
</tr>
<tr>
<td>799</td>
<td>Production checkers, graders, and sorters in manufacturing</td>
<td>98</td>
</tr>
<tr>
<td>628</td>
<td>Production supervisors or foremen</td>
<td>96</td>
</tr>
<tr>
<td>229</td>
<td>Computer programmers</td>
<td>94</td>
</tr>
<tr>
<td>385</td>
<td>Data entry keyers</td>
<td>94</td>
</tr>
<tr>
<td>473</td>
<td>Farmers, ranchers, and other agricultural managers</td>
<td>94</td>
</tr>
<tr>
<td>503</td>
<td>Supervisors of mechanics and repairers</td>
<td>94</td>
</tr>
<tr>
<td>66</td>
<td>Actuaries</td>
<td>93</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
<td>Year</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>83</td>
<td>Medical scientists</td>
<td>93</td>
</tr>
<tr>
<td>99</td>
<td>Occupational therapists</td>
<td>93</td>
</tr>
<tr>
<td>103</td>
<td>Physical therapists</td>
<td>93</td>
</tr>
<tr>
<td>384</td>
<td>Proofreaders</td>
<td>93</td>
</tr>
<tr>
<td>479</td>
<td>Farm workers, incl. nursery farming, and marine life cultivation workers</td>
<td>93</td>
</tr>
<tr>
<td>489</td>
<td>Inspectors of agricultural products</td>
<td>93</td>
</tr>
<tr>
<td>733</td>
<td>Misc. woodworking machine operators</td>
<td>93</td>
</tr>
<tr>
<td>764</td>
<td>Washing, cleaning, and pickling machine operators</td>
<td>93</td>
</tr>
<tr>
<td>834</td>
<td>Miscellaneous transportation occupations</td>
<td>93</td>
</tr>
<tr>
<td>848</td>
<td>Hoist and winch operators</td>
<td>93</td>
</tr>
<tr>
<td>356</td>
<td>Mail clerks, outside of post office</td>
<td>92</td>
</tr>
<tr>
<td>699</td>
<td>Other plant and system operators</td>
<td>92</td>
</tr>
<tr>
<td>713</td>
<td>Forge and hammer operators</td>
<td>92</td>
</tr>
<tr>
<td>738</td>
<td>Winding and twisting textile and apparel operatives</td>
<td>92</td>
</tr>
<tr>
<td>813</td>
<td>Parking lot attendants</td>
<td>92</td>
</tr>
<tr>
<td>888</td>
<td>Packers and packagers by hand</td>
<td>92</td>
</tr>
<tr>
<td>75</td>
<td>Geologists</td>
<td>91</td>
</tr>
<tr>
<td>214</td>
<td>Engineering and science technicians</td>
<td>91</td>
</tr>
<tr>
<td>644</td>
<td>Precision grinders and fitters</td>
<td>91</td>
</tr>
<tr>
<td>709</td>
<td>Grinding, abrading, buffing, and polishing workers</td>
<td>91</td>
</tr>
<tr>
<td>729</td>
<td>Nail, tacking, shaping and joining mach ops (wood)</td>
<td>91</td>
</tr>
<tr>
<td>828</td>
<td>Ship and boat captains and operators</td>
<td>91</td>
</tr>
<tr>
<td>59</td>
<td>Engineers and other professionals, n.e.c.</td>
<td>90</td>
</tr>
<tr>
<td>637</td>
<td>Machinists</td>
<td>90</td>
</tr>
<tr>
<td>68</td>
<td>Mathematicians and statisticians</td>
<td>89</td>
</tr>
<tr>
<td>76</td>
<td>Physical scientists, n.e.c.</td>
<td>89</td>
</tr>
<tr>
<td>616</td>
<td>Miners</td>
<td>89</td>
</tr>
<tr>
<td>734</td>
<td>Bookbinders and printing machine operators, n.e.c.</td>
<td>89</td>
</tr>
<tr>
<td>774</td>
<td>Photographic process machine operators</td>
<td>89</td>
</tr>
<tr>
<td>849</td>
<td>Crane and tower operators</td>
<td>89</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
<td>Year</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>254</td>
<td>Real estate sales occupations</td>
<td>88</td>
</tr>
<tr>
<td>29</td>
<td>Buyers, wholesale and retail trade</td>
<td>85</td>
</tr>
<tr>
<td>43</td>
<td>Architects</td>
<td>87</td>
</tr>
<tr>
<td>55</td>
<td>Electrical engineers</td>
<td>87</td>
</tr>
<tr>
<td>166</td>
<td>Economists, market and survey researchers</td>
<td>87</td>
</tr>
<tr>
<td>169</td>
<td>Social scientists and sociologists, n.e.c.</td>
<td>87</td>
</tr>
<tr>
<td>347</td>
<td>Office machine operators, n.e.c.</td>
<td>87</td>
</tr>
<tr>
<td>558</td>
<td>Supervisors of construction work</td>
<td>87</td>
</tr>
<tr>
<td>24</td>
<td>Insurance underwriters</td>
<td>84</td>
</tr>
<tr>
<td>56</td>
<td>Industrial engineers</td>
<td>84</td>
</tr>
<tr>
<td>47</td>
<td>Petroleum, mining, and geological engineers</td>
<td>85</td>
</tr>
<tr>
<td>53</td>
<td>Civil engineers</td>
<td>85</td>
</tr>
<tr>
<td>73</td>
<td>Chemists</td>
<td>85</td>
</tr>
<tr>
<td>86</td>
<td>Veterinarians</td>
<td>85</td>
</tr>
<tr>
<td>167</td>
<td>Psychologists</td>
<td>85</td>
</tr>
<tr>
<td>233</td>
<td>Programmers of numerically controlled machine tools</td>
<td>85</td>
</tr>
<tr>
<td>567</td>
<td>Carpenters</td>
<td>85</td>
</tr>
<tr>
<td>589</td>
<td>Glaziers</td>
<td>85</td>
</tr>
<tr>
<td>707</td>
<td>Rollers, roll hands, and finishers of metal</td>
<td>85</td>
</tr>
<tr>
<td>15</td>
<td>Managers of medicine and health occupations</td>
<td>84</td>
</tr>
<tr>
<td>24</td>
<td>Insurance underwriters</td>
<td>84</td>
</tr>
<tr>
<td>56</td>
<td>Industrial engineers</td>
<td>84</td>
</tr>
<tr>
<td>173</td>
<td>Urban and regional planners</td>
<td>84</td>
</tr>
<tr>
<td>218</td>
<td>Surveyors, cartographers, mapping scientists/techs</td>
<td>84</td>
</tr>
<tr>
<td>223</td>
<td>Biological technicians</td>
<td>84</td>
</tr>
<tr>
<td>523</td>
<td>Repairers of industrial electrical equipment</td>
<td>84</td>
</tr>
<tr>
<td>723</td>
<td>Metal platers</td>
<td>84</td>
</tr>
<tr>
<td>749</td>
<td>Miscellaneous textile machine operators</td>
<td>84</td>
</tr>
<tr>
<td>753</td>
<td>Cementing and gluing machine operators</td>
<td>84</td>
</tr>
<tr>
<td>64</td>
<td>Computer systems analysts and computer scientists</td>
<td>83</td>
</tr>
<tr>
<td>65</td>
<td>Operations and systems researchers and analysts</td>
<td>83</td>
</tr>
<tr>
<td>844</td>
<td>Operating engineers of construction equipment</td>
<td>83</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
<td>Index</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>853</td>
<td>Excavating and loading machine operators</td>
<td>83</td>
</tr>
<tr>
<td>13</td>
<td>Managers in marketing, advert., PR</td>
<td>82</td>
</tr>
<tr>
<td>78</td>
<td>Biological scientists</td>
<td>82</td>
</tr>
<tr>
<td>228</td>
<td>Broadcast equipment operators</td>
<td>82</td>
</tr>
<tr>
<td>235</td>
<td>Technicians, n.e.c.</td>
<td>82</td>
</tr>
<tr>
<td>488</td>
<td>Graders and sorters of agricultural products</td>
<td>82</td>
</tr>
<tr>
<td>598</td>
<td>Drillers of earth</td>
<td>82</td>
</tr>
<tr>
<td>25</td>
<td>Other financial specialists</td>
<td>81</td>
</tr>
<tr>
<td>217</td>
<td>Drafters</td>
<td>81</td>
</tr>
<tr>
<td>594</td>
<td>Paving, surfacing, and tamping equipment operators</td>
<td>81</td>
</tr>
<tr>
<td>647</td>
<td>Jewelers and precious stone and metal workers</td>
<td>81</td>
</tr>
<tr>
<td>668</td>
<td>Upholsterers</td>
<td>81</td>
</tr>
<tr>
<td>678</td>
<td>Dental laboratory and medical appliance technicians</td>
<td>81</td>
</tr>
<tr>
<td>26</td>
<td>Management analysts</td>
<td>80</td>
</tr>
<tr>
<td>33</td>
<td>Purchasing agents and buyers, n.e.c.</td>
<td>80</td>
</tr>
<tr>
<td>44</td>
<td>Aerospace engineers</td>
<td>80</td>
</tr>
<tr>
<td>184</td>
<td>Technical writers</td>
<td>80</td>
</tr>
<tr>
<td>189</td>
<td>Photographers</td>
<td>80</td>
</tr>
<tr>
<td>226</td>
<td>Airplane pilots and navigators</td>
<td>80</td>
</tr>
<tr>
<td>706</td>
<td>Punching and stamping press operatives</td>
<td>80</td>
</tr>
<tr>
<td>757</td>
<td>Separating, filtering, and clarifying machine operators</td>
<td>80</td>
</tr>
<tr>
<td>178</td>
<td>Lawyers and judges</td>
<td>79</td>
</tr>
<tr>
<td>95</td>
<td>Registered nurses</td>
<td>78</td>
</tr>
<tr>
<td>79</td>
<td>Foresters and conservation scientists</td>
<td>77</td>
</tr>
<tr>
<td>185</td>
<td>Designers</td>
<td>77</td>
</tr>
<tr>
<td>364</td>
<td>Shipping and receiving clerks</td>
<td>77</td>
</tr>
<tr>
<td>418</td>
<td>Police and detectives, public service</td>
<td>77</td>
</tr>
<tr>
<td>765</td>
<td>Paper folding machine operators</td>
<td>77</td>
</tr>
<tr>
<td>204</td>
<td>Dental hygienists</td>
<td>76</td>
</tr>
<tr>
<td>426</td>
<td>Guards and police, except public service</td>
<td>76</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
<td>Year</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>448</td>
<td>Supervisors of cleaning and building service</td>
<td>76</td>
</tr>
<tr>
<td>467</td>
<td>Motion picture projectionists</td>
<td>76</td>
</tr>
<tr>
<td>519</td>
<td>Machinery maintenance occupations</td>
<td>76</td>
</tr>
<tr>
<td>688</td>
<td>Batch food makers</td>
<td>76</td>
</tr>
<tr>
<td>789</td>
<td>Painting and decoration occupations</td>
<td>76</td>
</tr>
<tr>
<td>8</td>
<td>Human resources and labor relations managers</td>
<td>75</td>
</tr>
<tr>
<td>57</td>
<td>Mechanical engineers</td>
<td>75</td>
</tr>
<tr>
<td>645</td>
<td>Patternmakers and model makers, metal and plastic</td>
<td>75</td>
</tr>
<tr>
<td>684</td>
<td>Miscellaneous precision workers, n.e.c.</td>
<td>75</td>
</tr>
<tr>
<td>696</td>
<td>Plant and system operators, stationary engineers</td>
<td>75</td>
</tr>
<tr>
<td>708</td>
<td>Drilling and boring machine operators</td>
<td>75</td>
</tr>
<tr>
<td>22</td>
<td>Managers and administrators, n.e.c.</td>
<td>68</td>
</tr>
<tr>
<td>308</td>
<td>Computer and peripheral equipment operators</td>
<td>68</td>
</tr>
<tr>
<td>7</td>
<td>Financial managers</td>
<td>67</td>
</tr>
<tr>
<td>386</td>
<td>Statistical clerks</td>
<td>67</td>
</tr>
<tr>
<td>525</td>
<td>Repairers of data processing equipment</td>
<td>67</td>
</tr>
<tr>
<td>526</td>
<td>Repairers of household appliances and power tools</td>
<td>67</td>
</tr>
<tr>
<td>825</td>
<td>Railroad brake, coupler, and switch operators</td>
<td>67</td>
</tr>
<tr>
<td>518</td>
<td>Industrial machinery repairers</td>
<td>66</td>
</tr>
<tr>
<td>255</td>
<td>Financial service sales occupations</td>
<td>64</td>
</tr>
<tr>
<td>779</td>
<td>Machine operators, n.e.c.</td>
<td>64</td>
</tr>
<tr>
<td>856</td>
<td>Industrial truck and tractor operators</td>
<td>64</td>
</tr>
<tr>
<td>14</td>
<td>Managers in education and related fields</td>
<td>63</td>
</tr>
<tr>
<td>175</td>
<td>Religious workers, n.e.c.</td>
<td>63</td>
</tr>
<tr>
<td>368</td>
<td>Weighers, measurers, and checkers</td>
<td>63</td>
</tr>
<tr>
<td>408</td>
<td>Laundry and dry cleaning workers</td>
<td>63</td>
</tr>
<tr>
<td>243</td>
<td>Sales supervisors and proprietors</td>
<td>61</td>
</tr>
<tr>
<td>174</td>
<td>Social workers</td>
<td>60</td>
</tr>
<tr>
<td>516</td>
<td>Heavy equipment and farm equipment mechanics</td>
<td>60</td>
</tr>
<tr>
<td>575</td>
<td>Electricians</td>
<td>60</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
<td>Year</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>75</td>
<td>Respiratory therapists</td>
<td>59</td>
</tr>
<tr>
<td>104</td>
<td>Speech therapists</td>
<td>59</td>
</tr>
<tr>
<td>319</td>
<td>Receptionists and other information clerks</td>
<td>59</td>
</tr>
<tr>
<td>507</td>
<td>Bus, truck, and stationary engine mechanics</td>
<td>59</td>
</tr>
<tr>
<td>755</td>
<td>Extruding and forming machine operators</td>
<td>59</td>
</tr>
<tr>
<td>859</td>
<td>Misc. material moving equipment operators</td>
<td>59</td>
</tr>
<tr>
<td>206</td>
<td>Radiologic technologists and technicians</td>
<td>58</td>
</tr>
<tr>
<td>413</td>
<td>Supervisors, firefighting and fire prevention occupations</td>
<td>58</td>
</tr>
<tr>
<td>417</td>
<td>Fire inspection, fire fighting, and fire prevention occupations</td>
<td>58</td>
</tr>
<tr>
<td>527</td>
<td>Telecom and line installers and repairers</td>
<td>58</td>
</tr>
<tr>
<td>549</td>
<td>Mechanics and repairers, n.e.c.</td>
<td>57</td>
</tr>
<tr>
<td>599</td>
<td>Misc. construction and related occupations</td>
<td>57</td>
</tr>
<tr>
<td>653</td>
<td>Sheet metal workers</td>
<td>57</td>
</tr>
<tr>
<td>666</td>
<td>Tailors, dressmakers, and sewers</td>
<td>57</td>
</tr>
<tr>
<td>159</td>
<td>Teachers, n.e.c.</td>
<td>55</td>
</tr>
<tr>
<td>496</td>
<td>Timber, logging, and forestry workers</td>
<td>55</td>
</tr>
<tr>
<td>785</td>
<td>Assemblers of electrical equipment</td>
<td>55</td>
</tr>
<tr>
<td>37</td>
<td>Management support occupations</td>
<td>54</td>
</tr>
<tr>
<td>85</td>
<td>Dentists</td>
<td>54</td>
</tr>
<tr>
<td>97</td>
<td>Dieticians and nutritionists</td>
<td>54</td>
</tr>
<tr>
<td>105</td>
<td>Therapists, n.e.c.</td>
<td>54</td>
</tr>
<tr>
<td>158</td>
<td>Special education teachers</td>
<td>54</td>
</tr>
<tr>
<td>509</td>
<td>Small engine repairers</td>
<td>54</td>
</tr>
<tr>
<td>579</td>
<td>Painters, construction and maintenance</td>
<td>54</td>
</tr>
<tr>
<td>595</td>
<td>Roofers</td>
<td>54</td>
</tr>
<tr>
<td>617</td>
<td>Other mining occupations</td>
<td>54</td>
</tr>
<tr>
<td>766</td>
<td>Furnace, kiln, and oven operators, apart from food</td>
<td>54</td>
</tr>
<tr>
<td>77</td>
<td>Agricultural and food scientists</td>
<td>53</td>
</tr>
<tr>
<td>84</td>
<td>Physicians</td>
<td>53</td>
</tr>
<tr>
<td>375</td>
<td>Insurance adjusters, examiners, and investigators</td>
<td>53</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
<td>Industry</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>614</td>
<td>Drillers of oil wells</td>
<td>53</td>
</tr>
<tr>
<td>875</td>
<td>Garbage and recyclable material collectors</td>
<td>53</td>
</tr>
<tr>
<td>188</td>
<td>Painters, sculptors, craft-artists, and print-makers</td>
<td>52</td>
</tr>
<tr>
<td>199</td>
<td>Athletes, sports instructors, and officials</td>
<td>52</td>
</tr>
<tr>
<td>451</td>
<td>Gardeners and groundskeepers</td>
<td>52</td>
</tr>
<tr>
<td>634</td>
<td>Tool and die makers and die setters</td>
<td>52</td>
</tr>
<tr>
<td>769</td>
<td>Slicing and cutting machine operators</td>
<td>52</td>
</tr>
<tr>
<td>889</td>
<td>Laborers, freight, stock, and material handlers, n.e.c.</td>
<td>49</td>
</tr>
<tr>
<td>23</td>
<td>Accountants and auditors</td>
<td>48</td>
</tr>
<tr>
<td>869</td>
<td>Construction laborers</td>
<td>48</td>
</tr>
<tr>
<td>258</td>
<td>Sales engineers</td>
<td>47</td>
</tr>
<tr>
<td>719</td>
<td>Molders and casting machine operators</td>
<td>47</td>
</tr>
<tr>
<td>744</td>
<td>Textile sewing machine operators</td>
<td>47</td>
</tr>
<tr>
<td>318</td>
<td>Transportation ticket and reservation agents</td>
<td>46</td>
</tr>
<tr>
<td>427</td>
<td>Protective service, n.e.c.</td>
<td>46</td>
</tr>
<tr>
<td>535</td>
<td>Precision instrument and equipment repairers</td>
<td>46</td>
</tr>
<tr>
<td>539</td>
<td>Repairers of mechanical controls and valves</td>
<td>46</td>
</tr>
<tr>
<td>809</td>
<td>Taxi drivers and chauffeurs</td>
<td>46</td>
</tr>
<tr>
<td>505</td>
<td>Automobile mechanics and repairers</td>
<td>45</td>
</tr>
<tr>
<td>803</td>
<td>Supervisors of motor vehicle transportation</td>
<td>45</td>
</tr>
<tr>
<td>808</td>
<td>Bus drivers</td>
<td>45</td>
</tr>
<tr>
<td>27</td>
<td>Personnel, HR, training, and labor rel. specialists</td>
<td>44</td>
</tr>
<tr>
<td>155</td>
<td>Kindergarten and earlier school teachers</td>
<td>44</td>
</tr>
<tr>
<td>577</td>
<td>Electric power installers and repairers</td>
<td>44</td>
</tr>
<tr>
<td>593</td>
<td>Insulation workers</td>
<td>44</td>
</tr>
<tr>
<td>157</td>
<td>Secondary school teachers</td>
<td>43</td>
</tr>
<tr>
<td>187</td>
<td>Actors, directors, and producers</td>
<td>43</td>
</tr>
<tr>
<td>585</td>
<td>Plumbers, pipe fitters, and steamfitters</td>
<td>43</td>
</tr>
<tr>
<td>727</td>
<td>Sawing machine operators and sawyers</td>
<td>43</td>
</tr>
<tr>
<td>36</td>
<td>Inspectors and compliance officers, outside</td>
<td>42</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation Description</td>
<td>Category</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>208</td>
<td>Health technologists and technicians, n.e.c.</td>
<td>42</td>
</tr>
<tr>
<td>376</td>
<td>Customer service reps, invest., adjusters, excl. insur.</td>
<td>42</td>
</tr>
<tr>
<td>156</td>
<td>Primary school teachers</td>
<td>40</td>
</tr>
<tr>
<td>163</td>
<td>Vocational and educational counselors</td>
<td>40</td>
</tr>
<tr>
<td>459</td>
<td>Recreation facility attendants</td>
<td>40</td>
</tr>
<tr>
<td>508</td>
<td>Aircraft mechanics</td>
<td>40</td>
</tr>
<tr>
<td>276</td>
<td>Cashiers</td>
<td>38</td>
</tr>
<tr>
<td>348</td>
<td>Telephone operators</td>
<td>35</td>
</tr>
<tr>
<td>450</td>
<td>Superv. of landscaping, lawn service, groundskeeping</td>
<td>35</td>
</tr>
<tr>
<td>533</td>
<td>Repairers of electrical equipment, n.e.c.</td>
<td>35</td>
</tr>
<tr>
<td>563</td>
<td>Masons, tilers, and carpet installers</td>
<td>35</td>
</tr>
<tr>
<td>573</td>
<td>Drywall installers</td>
<td>35</td>
</tr>
<tr>
<td>724</td>
<td>Heat treating equipment operators</td>
<td>35</td>
</tr>
<tr>
<td>804</td>
<td>Driver/sales workers and truck Drivers</td>
<td>35</td>
</tr>
<tr>
<td>865</td>
<td>Helpers, constructions</td>
<td>35</td>
</tr>
<tr>
<td>18</td>
<td>Managers of properties and real estate</td>
<td>34</td>
</tr>
<tr>
<td>205</td>
<td>Health record technologists and technicians</td>
<td>34</td>
</tr>
<tr>
<td>544</td>
<td>Millwrights</td>
<td>34</td>
</tr>
<tr>
<td>597</td>
<td>Structural metal workers</td>
<td>34</td>
</tr>
<tr>
<td>649</td>
<td>Engravers</td>
<td>34</td>
</tr>
<tr>
<td>677</td>
<td>Optical goods workers</td>
<td>34</td>
</tr>
<tr>
<td>703</td>
<td>Lathe and turning machine operatives</td>
<td>34</td>
</tr>
<tr>
<td>823</td>
<td>Railroad conductors and yardmasters</td>
<td>34</td>
</tr>
<tr>
<td>878</td>
<td>Machine feeders and offbearers</td>
<td>34</td>
</tr>
<tr>
<td>253</td>
<td>Insurance sales occupations</td>
<td>33</td>
</tr>
<tr>
<td>686</td>
<td>Butchers and meat cutters</td>
<td>33</td>
</tr>
<tr>
<td>756</td>
<td>Mixing and blending machine operators</td>
<td>33</td>
</tr>
<tr>
<td>453</td>
<td>Janitors</td>
<td>31</td>
</tr>
<tr>
<td>783</td>
<td>Welders, solderers, and metal cutters</td>
<td>30</td>
</tr>
<tr>
<td>227</td>
<td>Air traffic controllers</td>
<td>29</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
<td>Value</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>303</td>
<td>Office supervisors</td>
<td>29</td>
</tr>
<tr>
<td>414</td>
<td>Supervisors, police and detectives</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>Chief executives, public administrators, and legislators</td>
<td>28</td>
</tr>
<tr>
<td>34</td>
<td>Business and promotion agents</td>
<td>28</td>
</tr>
<tr>
<td>89</td>
<td>Other health and therapy occupations</td>
<td>28</td>
</tr>
<tr>
<td>165</td>
<td>Archivists and curators</td>
<td>28</td>
</tr>
<tr>
<td>186</td>
<td>Musicians and composers</td>
<td>28</td>
</tr>
<tr>
<td>344</td>
<td>Billing clerks and related financial records processing</td>
<td>28</td>
</tr>
<tr>
<td>423</td>
<td>Sheriffs, bailiffs, correctional institution officers</td>
<td>28</td>
</tr>
<tr>
<td>458</td>
<td>Hairdressers and cosmetologists</td>
<td>28</td>
</tr>
<tr>
<td>498</td>
<td>Fishing and hunting workers</td>
<td>28</td>
</tr>
<tr>
<td>88</td>
<td>Podiatrists</td>
<td>26</td>
</tr>
<tr>
<td>164</td>
<td>Librarians</td>
<td>26</td>
</tr>
<tr>
<td>433</td>
<td>Supervisors of food preparation and service</td>
<td>26</td>
</tr>
<tr>
<td>447</td>
<td>Health and nursing aides</td>
<td>26</td>
</tr>
<tr>
<td>583</td>
<td>Paperhangers</td>
<td>26</td>
</tr>
<tr>
<td>658</td>
<td>Furniture and wood finishers</td>
<td>26</td>
</tr>
<tr>
<td>754</td>
<td>Packers, fillers, and wrappers</td>
<td>26</td>
</tr>
<tr>
<td>234</td>
<td>Legal assistants and paralegalans</td>
<td>25</td>
</tr>
<tr>
<td>468</td>
<td>Childcareworkers</td>
<td>25</td>
</tr>
<tr>
<td>675</td>
<td>Hand molders, shapers, and casters, except jewelers</td>
<td>25</td>
</tr>
<tr>
<td>885</td>
<td>Garage and service station related occupations</td>
<td>25</td>
</tr>
<tr>
<td>106</td>
<td>Physicians' assistants</td>
<td>24</td>
</tr>
<tr>
<td>336</td>
<td>Records clerks</td>
<td>24</td>
</tr>
<tr>
<td>383</td>
<td>Bank tellers</td>
<td>24</td>
</tr>
<tr>
<td>534</td>
<td>Heating, air conditioning, and refrigeration mechanics</td>
<td>24</td>
</tr>
<tr>
<td>873</td>
<td>Production helpers</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>Purchasing Managers</td>
<td>23</td>
</tr>
<tr>
<td>183</td>
<td>Writers and authors</td>
<td>23</td>
</tr>
<tr>
<td>197</td>
<td>Specialists in marketing, advert., PR</td>
<td>23</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
<td>Week</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>207</td>
<td>Licensed practical nurses</td>
<td>23</td>
</tr>
<tr>
<td>224</td>
<td>Chemical technicians</td>
<td>23</td>
</tr>
<tr>
<td>373</td>
<td>Material recording, sched., prod., plan., expediting cl.</td>
<td>23</td>
</tr>
<tr>
<td>584</td>
<td>Plasterers</td>
<td>23</td>
</tr>
<tr>
<td>615</td>
<td>Explosives workers</td>
<td>23</td>
</tr>
<tr>
<td>177</td>
<td>Welfare service workers</td>
<td>21</td>
</tr>
<tr>
<td>328</td>
<td>Human resources clerks, excl payroll and timekeeping</td>
<td>21</td>
</tr>
<tr>
<td>377</td>
<td>Eligibility clerks for government prog., social welfare</td>
<td>21</td>
</tr>
<tr>
<td>389</td>
<td>Administrative support jobs, n.e.c.</td>
<td>21</td>
</tr>
<tr>
<td>436</td>
<td>Cooks</td>
<td>21</td>
</tr>
<tr>
<td>462</td>
<td>Ushers</td>
<td>21</td>
</tr>
<tr>
<td>470</td>
<td>Supervisors of personal service jobs, n.e.c</td>
<td>21</td>
</tr>
<tr>
<td>514</td>
<td>Auto body repairers</td>
<td>21</td>
</tr>
<tr>
<td>643</td>
<td>Boilermakers</td>
<td>21</td>
</tr>
<tr>
<td>747</td>
<td>Clothing pressing machine operators</td>
<td>21</td>
</tr>
<tr>
<td>829</td>
<td>Sailors and deckhands, ship/marine engineers</td>
<td>21</td>
</tr>
<tr>
<td>269</td>
<td>Parts salesperson</td>
<td>20</td>
</tr>
<tr>
<td>461</td>
<td>Guides</td>
<td>20</td>
</tr>
<tr>
<td>588</td>
<td>Concrete and cement workers</td>
<td>20</td>
</tr>
<tr>
<td>657</td>
<td>Cabinetmakers and bench carpenters</td>
<td>20</td>
</tr>
<tr>
<td>887</td>
<td>Vehicle washers and equipment cleaners</td>
<td>20</td>
</tr>
<tr>
<td>274</td>
<td>Sales occupations and sales representatives</td>
<td>18</td>
</tr>
<tr>
<td>365</td>
<td>Stock and inventory clerks</td>
<td>18</td>
</tr>
<tr>
<td>96</td>
<td>Pharmacists</td>
<td>17</td>
</tr>
<tr>
<td>256</td>
<td>Advertising and related sales jobs</td>
<td>16</td>
</tr>
<tr>
<td>379</td>
<td>General office clerks</td>
<td>16</td>
</tr>
<tr>
<td>425</td>
<td>Crossing guards</td>
<td>16</td>
</tr>
<tr>
<td>193</td>
<td>Dancers</td>
<td>14</td>
</tr>
<tr>
<td>195</td>
<td>Editors and reporters</td>
<td>14</td>
</tr>
<tr>
<td>316</td>
<td>Interviewers, enumerators, and surveyors</td>
<td>14</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
<td>Count</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>337</td>
<td>Bookkeepers and accounting and auditing clerks</td>
<td>14</td>
</tr>
<tr>
<td>445</td>
<td>Dental Assistants</td>
<td>14</td>
</tr>
<tr>
<td>464</td>
<td>Baggage porters, bellhops and concierges</td>
<td>14</td>
</tr>
<tr>
<td>466</td>
<td>Recreation and fitness workers</td>
<td>14</td>
</tr>
<tr>
<td>687</td>
<td>Bakers</td>
<td>14</td>
</tr>
<tr>
<td>814</td>
<td>Motor transportation occupations, n.e.c.</td>
<td>14</td>
</tr>
<tr>
<td>866</td>
<td>Helpers, surveyors</td>
<td>14</td>
</tr>
<tr>
<td>277</td>
<td>Door-to-door sales, street sales, and news vendors</td>
<td>13</td>
</tr>
<tr>
<td>357</td>
<td>Messengers</td>
<td>13</td>
</tr>
<tr>
<td>469</td>
<td>Personal service occupations, n.e.c</td>
<td>13</td>
</tr>
<tr>
<td>669</td>
<td>Shoe and leather workers and repairers</td>
<td>13</td>
</tr>
<tr>
<td>198</td>
<td>Announcers</td>
<td>9</td>
</tr>
<tr>
<td>313</td>
<td>Secretaries and administrative assistants</td>
<td>9</td>
</tr>
<tr>
<td>315</td>
<td>Typists</td>
<td>9</td>
</tr>
<tr>
<td>329</td>
<td>Library assistants</td>
<td>9</td>
</tr>
<tr>
<td>366</td>
<td>Meter readers</td>
<td>9</td>
</tr>
<tr>
<td>378</td>
<td>Bill and account collectors</td>
<td>9</td>
</tr>
<tr>
<td>763</td>
<td>Food roasting and baking machine operators</td>
<td>9</td>
</tr>
<tr>
<td>387</td>
<td>Teacher's aides</td>
<td>7</td>
</tr>
<tr>
<td>435</td>
<td>Waiters and waitresses</td>
<td>7</td>
</tr>
<tr>
<td>444</td>
<td>Miscellaneous food preparation and service workers</td>
<td>7</td>
</tr>
<tr>
<td>471</td>
<td>Public transportation attendants</td>
<td>7</td>
</tr>
<tr>
<td>536</td>
<td>Locksmiths and safe repairers</td>
<td>7</td>
</tr>
<tr>
<td>335</td>
<td>File clerks</td>
<td>6</td>
</tr>
<tr>
<td>434</td>
<td>Bartenders</td>
<td>6</td>
</tr>
<tr>
<td>405</td>
<td>Housekeepers, maids, butlers, and cleaners</td>
<td>5</td>
</tr>
<tr>
<td>270</td>
<td>Sales workers</td>
<td>3</td>
</tr>
<tr>
<td>354</td>
<td>Postal clerks, exluding mail carriers</td>
<td>3</td>
</tr>
<tr>
<td>176</td>
<td>Clergy</td>
<td>2</td>
</tr>
<tr>
<td>275</td>
<td>Sales counter clerks</td>
<td>2</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
<td>Count</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>283</td>
<td>Sales demonstrators, promoters, and models</td>
<td>2</td>
</tr>
<tr>
<td>317</td>
<td>Hotel clerks</td>
<td>2</td>
</tr>
<tr>
<td>326</td>
<td>Correspondence and order clerks</td>
<td>2</td>
</tr>
<tr>
<td>338</td>
<td>Payroll and timekeeping clerks</td>
<td>2</td>
</tr>
<tr>
<td>457</td>
<td>Barbers</td>
<td>2</td>
</tr>
<tr>
<td>745</td>
<td>Shoemaking machine operators</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>Funeral directors</td>
<td>1</td>
</tr>
<tr>
<td>154</td>
<td>Subject instructors, college</td>
<td>1</td>
</tr>
<tr>
<td>194</td>
<td>Art/entertainment performers and related occs</td>
<td>1</td>
</tr>
<tr>
<td>355</td>
<td>Mail carriers for postal service</td>
<td>1</td>
</tr>
<tr>
<td>439</td>
<td>Food preparation workers</td>
<td>1</td>
</tr>
<tr>
<td>472</td>
<td>Animal caretakers, except farm</td>
<td>1</td>
</tr>
<tr>
<td>285</td>
<td>Auctioneers and sales support occupations, n.e.c.</td>
<td>1</td>
</tr>
<tr>
<td>349</td>
<td>Other telecom operators</td>
<td>1</td>
</tr>
<tr>
<td>415</td>
<td>Supervisors of guards</td>
<td>1</td>
</tr>
</tbody>
</table>
APPENDIX B

Final Dataset Occupation List

<table>
<thead>
<tr>
<th>OCC CODE</th>
<th>OCC TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-1021</td>
<td>General and Operations Managers</td>
</tr>
<tr>
<td>11-1031</td>
<td>Legislators</td>
</tr>
<tr>
<td>11-2011</td>
<td>Advertising and Promotions Managers</td>
</tr>
<tr>
<td>11-2021</td>
<td>Marketing Managers</td>
</tr>
<tr>
<td>11-2022</td>
<td>Sales Managers</td>
</tr>
<tr>
<td>11-3021</td>
<td>Computer and Information Systems Managers</td>
</tr>
<tr>
<td>11-3031</td>
<td>Financial Managers</td>
</tr>
<tr>
<td>11-3051</td>
<td>Industrial Production Managers</td>
</tr>
<tr>
<td>11-3061</td>
<td>Purchasing Managers</td>
</tr>
<tr>
<td>11-3071</td>
<td>Transportation, Storage, and Distribution Managers</td>
</tr>
<tr>
<td>11-3111</td>
<td>Compensation and Benefits Managers</td>
</tr>
<tr>
<td>11-3121</td>
<td>Human Resources Managers</td>
</tr>
<tr>
<td>11-3131</td>
<td>Training and Development Managers</td>
</tr>
<tr>
<td>11-9021</td>
<td>Construction Managers</td>
</tr>
<tr>
<td>11-9031</td>
<td>Education Administrators, Preschool and Childcare Center/Program</td>
</tr>
<tr>
<td>11-9032</td>
<td>Education Administrators, Elementary and Secondary School</td>
</tr>
<tr>
<td>11-9041</td>
<td>Architectural and Engineering Managers</td>
</tr>
<tr>
<td>11-9051</td>
<td>Food Service Managers</td>
</tr>
<tr>
<td>11-9071</td>
<td>Gaming Managers</td>
</tr>
<tr>
<td>11-9111</td>
<td>Medical and Health Services Managers</td>
</tr>
<tr>
<td>11-9121</td>
<td>Natural Sciences Managers</td>
</tr>
<tr>
<td>11-9141</td>
<td>Property, Real Estate, and Community Association Managers</td>
</tr>
<tr>
<td>13-1031</td>
<td>Claims Adjusters, Examiners, and Investigators</td>
</tr>
<tr>
<td>13-1041</td>
<td>Compliance Officers</td>
</tr>
<tr>
<td>13-1051</td>
<td>Cost Estimators</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>13-1081</td>
<td>Logisticians</td>
</tr>
<tr>
<td>13-1111</td>
<td>Management Analysts</td>
</tr>
<tr>
<td>13-1121</td>
<td>Meeting, Convention, and Event Planners</td>
</tr>
<tr>
<td>13-1141</td>
<td>Compensation, Benefits, and Job Analysis Specialists</td>
</tr>
<tr>
<td>13-1151</td>
<td>Training and Development Specialists</td>
</tr>
<tr>
<td>13-1161</td>
<td>Market Research Analysts and Marketing Specialists</td>
</tr>
<tr>
<td>13-2011</td>
<td>Accountants and Auditors</td>
</tr>
<tr>
<td>13-2021</td>
<td>Appraisers and Assessors of Real Estate</td>
</tr>
<tr>
<td>13-2031</td>
<td>Budget Analysts</td>
</tr>
<tr>
<td>13-2041</td>
<td>Credit Analysts</td>
</tr>
<tr>
<td>13-2052</td>
<td>Personal Financial Advisors</td>
</tr>
<tr>
<td>13-2053</td>
<td>Insurance Underwriters</td>
</tr>
<tr>
<td>13-2061</td>
<td>Financial Examiners</td>
</tr>
<tr>
<td>13-2072</td>
<td>Loan Officers</td>
</tr>
<tr>
<td>15-1121</td>
<td>Computer Systems Analysts</td>
</tr>
<tr>
<td>15-2031</td>
<td>Operations Research Analysts</td>
</tr>
<tr>
<td>17-1011</td>
<td>Architects, Except Landscape and Naval</td>
</tr>
<tr>
<td>17-1021</td>
<td>Cartographers and Photogrammetrists</td>
</tr>
<tr>
<td>17-1022</td>
<td>Surveyors</td>
</tr>
<tr>
<td>17-2011</td>
<td>Aerospace Engineers</td>
</tr>
<tr>
<td>17-2031</td>
<td>Biomedical Engineers</td>
</tr>
<tr>
<td>17-2041</td>
<td>Chemical Engineers</td>
</tr>
<tr>
<td>17-2051</td>
<td>Civil Engineers</td>
</tr>
<tr>
<td>17-2061</td>
<td>Computer Hardware Engineers</td>
</tr>
<tr>
<td>17-2071</td>
<td>Electrical Engineers</td>
</tr>
<tr>
<td>17-2072</td>
<td>Electronics Engineers, Except Computer</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>17-2081</td>
<td>Environmental Engineers</td>
</tr>
<tr>
<td>17-2111</td>
<td>Health and Safety Engineers, Except Mining Safety Engineers and Inspectors</td>
</tr>
<tr>
<td>17-2112</td>
<td>Industrial Engineers</td>
</tr>
<tr>
<td>17-2131</td>
<td>Materials Engineers</td>
</tr>
<tr>
<td>17-2141</td>
<td>Mechanical Engineers</td>
</tr>
<tr>
<td>17-2199</td>
<td>Engineers, All Other</td>
</tr>
<tr>
<td>17-3011</td>
<td>Architectural and Civil Drafters</td>
</tr>
<tr>
<td>17-3012</td>
<td>Electrical and Electronics Drafters</td>
</tr>
<tr>
<td>17-3013</td>
<td>Mechanical Drafters</td>
</tr>
<tr>
<td>17-3019</td>
<td>Drafters, All Other</td>
</tr>
<tr>
<td>17-3022</td>
<td>Civil Engineering Technicians</td>
</tr>
<tr>
<td>17-3023</td>
<td>Electrical and Electronics Engineering Technicians</td>
</tr>
<tr>
<td>17-3025</td>
<td>Environmental Engineering Technicians</td>
</tr>
<tr>
<td>17-3026</td>
<td>Industrial Engineering Technicians</td>
</tr>
<tr>
<td>17-3027</td>
<td>Mechanical Engineering Technicians</td>
</tr>
<tr>
<td>17-3031</td>
<td>Surveying and Mapping Technicians</td>
</tr>
<tr>
<td>19-1021</td>
<td>Biochemists and Biophysicists</td>
</tr>
<tr>
<td>19-1029</td>
<td>Biological Scientists, All Other</td>
</tr>
<tr>
<td>19-1042</td>
<td>Medical Scientists, Except Epidemiologists</td>
</tr>
<tr>
<td>19-2012</td>
<td>Physicists</td>
</tr>
<tr>
<td>19-2031</td>
<td>Chemists</td>
</tr>
<tr>
<td>19-2032</td>
<td>Materials Scientists</td>
</tr>
<tr>
<td>19-2041</td>
<td>Environmental Scientists and Specialists, Including Health</td>
</tr>
<tr>
<td>19-2042</td>
<td>Geoscientists, Except Hydrologists and Geographers</td>
</tr>
<tr>
<td>19-2099</td>
<td>Physical Scientists, All Other</td>
</tr>
<tr>
<td>19-3051</td>
<td>Urban and Regional Planners</td>
</tr>
<tr>
<td>19-3099</td>
<td>Social Scientists and Related Workers, All Other</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>19-4021</td>
<td>Biological Technicians</td>
</tr>
<tr>
<td>19-4031</td>
<td>Chemical Technicians</td>
</tr>
<tr>
<td>19-4099</td>
<td>Life, Physical, and Social Science Technicians, All Other</td>
</tr>
<tr>
<td>21-1012</td>
<td>Educational, Guidance, School, and Vocational Counselors</td>
</tr>
<tr>
<td>21-1013</td>
<td>Marriage and Family Therapists</td>
</tr>
<tr>
<td>21-1015</td>
<td>Rehabilitation Counselors</td>
</tr>
<tr>
<td>21-1021</td>
<td>Child, Family, and School Social Workers</td>
</tr>
<tr>
<td>21-1022</td>
<td>Healthcare Social Workers</td>
</tr>
<tr>
<td>21-1093</td>
<td>Social and Human Service Assistants</td>
</tr>
<tr>
<td>21-2011</td>
<td>Clergy</td>
</tr>
<tr>
<td>21-2021</td>
<td>Directors, Religious Activities and Education</td>
</tr>
<tr>
<td>23-1011</td>
<td>Lawyers</td>
</tr>
<tr>
<td>23-2011</td>
<td>Paralegals and Legal Assistants</td>
</tr>
<tr>
<td>23-2099</td>
<td>Legal Support Workers, All Other</td>
</tr>
<tr>
<td>25-1011</td>
<td>Business Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1021</td>
<td>Computer Science Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1022</td>
<td>Mathematical Science Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1032</td>
<td>Engineering Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1042</td>
<td>Biological Science Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1052</td>
<td>Chemistry Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1054</td>
<td>Physics Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1061</td>
<td>Anthropology and Archeology Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1062</td>
<td>Area, Ethnic, and Cultural Studies Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1063</td>
<td>Economics Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1065</td>
<td>Political Science Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1066</td>
<td>Psychology Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1067</td>
<td>Sociology Teachers, Postsecondary</td>
</tr>
<tr>
<td>Code</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>25-1112</td>
<td>Law Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1121</td>
<td>Art, Drama, and Music Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1122</td>
<td>Communications Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1123</td>
<td>English Language and Literature Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1125</td>
<td>History Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-1194</td>
<td>Vocational Education Teachers, Postsecondary</td>
</tr>
<tr>
<td>25-2011</td>
<td>Preschool Teachers, Except Special Education</td>
</tr>
<tr>
<td>25-2012</td>
<td>Kindergarten Teachers, Except Special Education</td>
</tr>
<tr>
<td>25-2021</td>
<td>Elementary School Teachers, Except Special Education</td>
</tr>
<tr>
<td>25-2022</td>
<td>Middle School Teachers, Except Special and Career/Technical Education</td>
</tr>
<tr>
<td>25-2031</td>
<td>Secondary School Teachers, Except Special and Career/Technical Education</td>
</tr>
<tr>
<td>25-3021</td>
<td>Self-Enrichment Education Teachers</td>
</tr>
<tr>
<td>25-4012</td>
<td>Curators</td>
</tr>
<tr>
<td>25-4021</td>
<td>Librarians</td>
</tr>
<tr>
<td>25-4031</td>
<td>Library Technicians</td>
</tr>
<tr>
<td>25-9099</td>
<td>Education, Training, and Library Workers, All Other</td>
</tr>
<tr>
<td>27-1011</td>
<td>Art Directors</td>
</tr>
<tr>
<td>27-1021</td>
<td>Commercial and Industrial Designers</td>
</tr>
<tr>
<td>27-1022</td>
<td>Fashion Designers</td>
</tr>
<tr>
<td>27-1023</td>
<td>Floral Designers</td>
</tr>
<tr>
<td>27-1024</td>
<td>Graphic Designers</td>
</tr>
<tr>
<td>27-1025</td>
<td>Interior Designers</td>
</tr>
<tr>
<td>27-1026</td>
<td>Merchandise Displayers and Window Trimmers</td>
</tr>
<tr>
<td>27-1027</td>
<td>Set and Exhibit Designers</td>
</tr>
<tr>
<td>27-2012</td>
<td>Producers and Directors</td>
</tr>
<tr>
<td>27-2022</td>
<td>Coaches and Scouts</td>
</tr>
<tr>
<td>27-2041</td>
<td>Music Directors and Composers</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>27-3031</td>
<td>Public Relations Specialists</td>
</tr>
<tr>
<td>27-3041</td>
<td>Editors</td>
</tr>
<tr>
<td>27-3042</td>
<td>Technical Writers</td>
</tr>
<tr>
<td>27-3043</td>
<td>Writers and Authors</td>
</tr>
<tr>
<td>27-3099</td>
<td>Media and Communication Workers, All Other</td>
</tr>
<tr>
<td>27-4012</td>
<td>Broadcast Technicians</td>
</tr>
<tr>
<td>27-4021</td>
<td>Photographers</td>
</tr>
<tr>
<td>29-1021</td>
<td>Dentists, General</td>
</tr>
<tr>
<td>29-1031</td>
<td>Dietitians and Nutritionists</td>
</tr>
<tr>
<td>29-1041</td>
<td>Optometrists</td>
</tr>
<tr>
<td>29-1051</td>
<td>Pharmacists</td>
</tr>
<tr>
<td>29-1071</td>
<td>Physician Assistants</td>
</tr>
<tr>
<td>29-1122</td>
<td>Occupational Therapists</td>
</tr>
<tr>
<td>29-1123</td>
<td>Physical Therapists</td>
</tr>
<tr>
<td>29-1124</td>
<td>Radiation Therapists</td>
</tr>
<tr>
<td>29-1125</td>
<td>Recreational Therapists</td>
</tr>
<tr>
<td>29-1126</td>
<td>Respiratory Therapists</td>
</tr>
<tr>
<td>29-1127</td>
<td>Speech-Language Pathologists</td>
</tr>
<tr>
<td>29-1131</td>
<td>Veterinarians</td>
</tr>
<tr>
<td>29-2021</td>
<td>Dental Hygienists</td>
</tr>
<tr>
<td>29-2031</td>
<td>Cardiovascular Technologists and Technicians</td>
</tr>
<tr>
<td>29-2032</td>
<td>Diagnostic Medical Sonographers</td>
</tr>
<tr>
<td>29-2033</td>
<td>Nuclear Medicine Technologists</td>
</tr>
<tr>
<td>29-2051</td>
<td>Dietetic Technicians</td>
</tr>
<tr>
<td>29-2052</td>
<td>Pharmacy Technicians</td>
</tr>
<tr>
<td>29-2055</td>
<td>Surgical Technologists</td>
</tr>
<tr>
<td>29-2061</td>
<td>Licensed Practical and Licensed Vocational Nurses</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>29-2081</td>
<td>Opticians, Dispensing</td>
</tr>
<tr>
<td>31-2011</td>
<td>Occupational Therapy Assistants</td>
</tr>
<tr>
<td>31-2021</td>
<td>Physical Therapist Assistants</td>
</tr>
<tr>
<td>31-2022</td>
<td>Physical Therapist Aides</td>
</tr>
<tr>
<td>31-9011</td>
<td>Massage Therapists</td>
</tr>
<tr>
<td>31-9091</td>
<td>Dental Assistants</td>
</tr>
<tr>
<td>31-9092</td>
<td>Medical Assistants</td>
</tr>
<tr>
<td>31-9094</td>
<td>Medical Transcriptionists</td>
</tr>
<tr>
<td>31-9095</td>
<td>Pharmacy Aides</td>
</tr>
<tr>
<td>31-9096</td>
<td>Veterinary Assistants and Laboratory Animal Caretakers</td>
</tr>
<tr>
<td>33-1021</td>
<td>First-Line Supervisors of Fire Fighting and Prevention Workers</td>
</tr>
<tr>
<td>33-9031</td>
<td>Gaming Surveillance Officers and Gaming Investigators</td>
</tr>
<tr>
<td>33-9032</td>
<td>Security Guards</td>
</tr>
<tr>
<td>33-9091</td>
<td>Crossing Guards</td>
</tr>
<tr>
<td>33-9092</td>
<td>Lifeguards, Ski Patrol, and Other Recreational Protective Service Workers</td>
</tr>
<tr>
<td>35-1012</td>
<td>First-Line Supervisors of Food Preparation and Serving Workers</td>
</tr>
<tr>
<td>35-2011</td>
<td>Cooks, Fast Food</td>
</tr>
<tr>
<td>35-2012</td>
<td>Cooks, Institution and Cafeteria</td>
</tr>
<tr>
<td>35-2014</td>
<td>Cooks, Restaurant</td>
</tr>
<tr>
<td>35-2015</td>
<td>Cooks, Short Order</td>
</tr>
<tr>
<td>35-2021</td>
<td>Food Preparation Workers</td>
</tr>
<tr>
<td>35-3011</td>
<td>Bartenders</td>
</tr>
<tr>
<td>35-3031</td>
<td>Waiters and Waitresses</td>
</tr>
<tr>
<td>35-3041</td>
<td>Food Servers, Nonrestaurant</td>
</tr>
<tr>
<td>35-9011</td>
<td>Dining Room and Cafeteria Attendants and Bartender Helpers</td>
</tr>
<tr>
<td>35-9021</td>
<td>Dishwashers</td>
</tr>
<tr>
<td>35-9031</td>
<td>Hosts and Hostesses, Restaurant, Lounge, and Coffee Shop</td>
</tr>
<tr>
<td>Code</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>37-1011</td>
<td>First-Line Supervisors of Housekeeping and Janitorial Workers</td>
</tr>
<tr>
<td>37-1012</td>
<td>First-Line Supervisors of Landscaping, Lawn Service, and Groundskeeping Workers</td>
</tr>
<tr>
<td>37-2011</td>
<td>Janitors and Cleaners, Except Maids and Housekeeping Cleaners</td>
</tr>
<tr>
<td>37-2012</td>
<td>Maids and Housekeeping Cleaners</td>
</tr>
<tr>
<td>37-2021</td>
<td>Pest Control Workers</td>
</tr>
<tr>
<td>37-3011</td>
<td>Landscaping and Groundskeeping Workers</td>
</tr>
<tr>
<td>39-2021</td>
<td>Nonfarm Animal Caretakers</td>
</tr>
<tr>
<td>39-3011</td>
<td>Gaming Dealers</td>
</tr>
<tr>
<td>39-3031</td>
<td>Ushers, Lobby Attendants, and Ticket Takers</td>
</tr>
<tr>
<td>39-3091</td>
<td>Amusement and Recreation Attendants</td>
</tr>
<tr>
<td>39-3092</td>
<td>Costume Attendants</td>
</tr>
<tr>
<td>39-3093</td>
<td>Locker Room, Coatroom, and Dressing Room Attendants</td>
</tr>
<tr>
<td>39-5012</td>
<td>Hairdressers, Hairstylists, and Cosmetologists</td>
</tr>
<tr>
<td>39-5092</td>
<td>Manicurists and Pedicurists</td>
</tr>
<tr>
<td>39-5094</td>
<td>Skincare Specialists</td>
</tr>
<tr>
<td>39-6011</td>
<td>Baggage Porters and Bellhops</td>
</tr>
<tr>
<td>39-6012</td>
<td>Concierges</td>
</tr>
<tr>
<td>39-9011</td>
<td>Childcare Workers</td>
</tr>
<tr>
<td>39-9031</td>
<td>Fitness Trainers and Aerobics Instructors</td>
</tr>
<tr>
<td>39-9032</td>
<td>Recreation Workers</td>
</tr>
<tr>
<td>39-9041</td>
<td>Residential Advisors</td>
</tr>
<tr>
<td>41-1011</td>
<td>First-Line Supervisors of Retail Sales Workers</td>
</tr>
<tr>
<td>41-1012</td>
<td>First-Line Supervisors of Non-Retail Sales Workers</td>
</tr>
<tr>
<td>41-2021</td>
<td>Cashiers</td>
</tr>
<tr>
<td>41-2022</td>
<td>Gaming Change Persons and Booth Cashiers</td>
</tr>
<tr>
<td>41-2021</td>
<td>Counter and Rental Clerks</td>
</tr>
<tr>
<td>41-2022</td>
<td>Parts Salespersons</td>
</tr>
<tr>
<td>41-2031</td>
<td>Retail Salespersons</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
</tr>
<tr>
<td>41-3011</td>
<td>Advertising Sales Agents</td>
</tr>
<tr>
<td>41-3021</td>
<td>Insurance Sales Agents</td>
</tr>
<tr>
<td>41-3031</td>
<td>Securities, Commodities, and Financial Services Sales Agents</td>
</tr>
<tr>
<td>41-3041</td>
<td>Travel Agents</td>
</tr>
<tr>
<td>41-4011</td>
<td>Sales Representatives, Wholesale and Manufacturing, Technical and Scientific Products</td>
</tr>
<tr>
<td>41-4012</td>
<td>Sales Representatives, Wholesale and Manufacturing, Except Technical and Scientific Products</td>
</tr>
<tr>
<td>41-9011</td>
<td>Demonstrators and Product Promoters</td>
</tr>
<tr>
<td>41-9031</td>
<td>Sales Engineers</td>
</tr>
<tr>
<td>41-9041</td>
<td>Telemarketers</td>
</tr>
<tr>
<td>43-1011</td>
<td>First-Line Supervisors of Office and Administrative Support Workers</td>
</tr>
<tr>
<td>43-3011</td>
<td>Bill and Account Collectors</td>
</tr>
<tr>
<td>43-3021</td>
<td>Billing and Posting Clerks</td>
</tr>
<tr>
<td>43-3031</td>
<td>Bookkeeping, Accounting, and Auditing Clerks</td>
</tr>
<tr>
<td>43-3041</td>
<td>Gaming Cage Workers</td>
</tr>
<tr>
<td>43-3051</td>
<td>Payroll and Timekeeping Clerks</td>
</tr>
<tr>
<td>43-3061</td>
<td>Procurement Clerks</td>
</tr>
<tr>
<td>43-3071</td>
<td>Tellers</td>
</tr>
<tr>
<td>43-4011</td>
<td>Brokerage Clerks</td>
</tr>
<tr>
<td>43-4031</td>
<td>Court, Municipal, and License Clerks</td>
</tr>
<tr>
<td>43-4041</td>
<td>Credit Authorizers, Checkers, and Clerks</td>
</tr>
<tr>
<td>43-4051</td>
<td>Customer Service Representatives</td>
</tr>
<tr>
<td>43-4071</td>
<td>File Clerks</td>
</tr>
<tr>
<td>43-4081</td>
<td>Hotel, Motel, and Resort Desk Clerks</td>
</tr>
<tr>
<td>43-4111</td>
<td>Interviewers, Except Eligibility and Loan</td>
</tr>
<tr>
<td>43-4121</td>
<td>Library Assistants, Clerical</td>
</tr>
<tr>
<td>43-4131</td>
<td>Loan Interviewers and Clerks</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>43-4151</td>
<td>Order Clerks</td>
</tr>
<tr>
<td>43-4161</td>
<td>Human Resources Assistants, Except Payroll and Timekeeping</td>
</tr>
<tr>
<td>43-4171</td>
<td>Receptionists and Information Clerks</td>
</tr>
<tr>
<td>43-4181</td>
<td>Reservation and Transportation Ticket Agents and Travel Clerks</td>
</tr>
<tr>
<td>43-4199</td>
<td>Information and Record Clerks, All Other</td>
</tr>
<tr>
<td>43-5011</td>
<td>Cargo and Freight Agents</td>
</tr>
<tr>
<td>43-5021</td>
<td>Couriers and Messengers</td>
</tr>
<tr>
<td>43-5031</td>
<td>Police, Fire, and Ambulance Dispatchers</td>
</tr>
<tr>
<td>43-5032</td>
<td>Dispatchers, Except Police, Fire, and Ambulance</td>
</tr>
<tr>
<td>43-5051</td>
<td>Postal Service Clerks</td>
</tr>
<tr>
<td>43-5052</td>
<td>Postal Service Mail Carriers</td>
</tr>
<tr>
<td>43-5053</td>
<td>Postal Service Mail Sorters, Processors, and Processing Machine Operators</td>
</tr>
<tr>
<td>43-5061</td>
<td>Production, Planning, and Expediting Clerks</td>
</tr>
<tr>
<td>43-5071</td>
<td>Shipping, Receiving, and Traffic Clerks</td>
</tr>
<tr>
<td>43-5111</td>
<td>Weighers, Measurers, Checkers, and Samplers, Recordkeeping</td>
</tr>
<tr>
<td>43-6011</td>
<td>Executive Secretaries and Executive Administrative Assistants</td>
</tr>
<tr>
<td>43-6012</td>
<td>Legal Secretaries</td>
</tr>
<tr>
<td>43-6013</td>
<td>Medical Secretaries</td>
</tr>
<tr>
<td>43-6014</td>
<td>Secretaries and Administrative Assistants, Except Legal, Medical, and Executive</td>
</tr>
<tr>
<td>43-9021</td>
<td>Data Entry Keyers</td>
</tr>
<tr>
<td>43-9022</td>
<td>Word Processors and Typists</td>
</tr>
<tr>
<td>43-9041</td>
<td>Insurance Claims and Policy Processing Clerks</td>
</tr>
<tr>
<td>43-9051</td>
<td>Mail Clerks and Mail Machine Operators, Except Postal Service</td>
</tr>
<tr>
<td>43-9061</td>
<td>Office Clerks, General</td>
</tr>
<tr>
<td>43-9071</td>
<td>Office Machine Operators, Except Computer</td>
</tr>
<tr>
<td>45-1011</td>
<td>First-Line Supervisors of Farming, Fishing, and Forestry Workers</td>
</tr>
<tr>
<td>45-2011</td>
<td>Agricultural Inspectors</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>45-2092</td>
<td>Farmworkers and Laborers, Crop, Nursery, and Greenhouse</td>
</tr>
<tr>
<td>45-2093</td>
<td>Farmworkers, Farm, Ranch, and Aquacultural Animals</td>
</tr>
<tr>
<td>47-1011</td>
<td>First-Line Supervisors of Construction Trades and Extraction Workers</td>
</tr>
<tr>
<td>47-2021</td>
<td>Brickmasons and Blockmasons</td>
</tr>
<tr>
<td>47-2031</td>
<td>Carpenters</td>
</tr>
<tr>
<td>47-2041</td>
<td>Carpet Installers</td>
</tr>
<tr>
<td>47-2051</td>
<td>Cement Masons and Concrete Finishers</td>
</tr>
<tr>
<td>47-2061</td>
<td>Construction Laborers</td>
</tr>
<tr>
<td>47-2071</td>
<td>Paving, Surfacing, and Tamping Equipment Operators</td>
</tr>
<tr>
<td>47-2073</td>
<td>Operating Engineers and Other Construction Equipment Operators</td>
</tr>
<tr>
<td>47-2081</td>
<td>Drywall and Ceiling Tile Installers</td>
</tr>
<tr>
<td>47-2082</td>
<td>Tapers</td>
</tr>
<tr>
<td>47-2111</td>
<td>Electricians</td>
</tr>
<tr>
<td>47-2141</td>
<td>Painters, Construction and Maintenance</td>
</tr>
<tr>
<td>47-2152</td>
<td>Plumbers, Pipefitters, and Steamfitters</td>
</tr>
<tr>
<td>47-2161</td>
<td>Plasterers and Stucco Masons</td>
</tr>
<tr>
<td>47-2181</td>
<td>Roofers</td>
</tr>
<tr>
<td>47-2211</td>
<td>Sheet Metal Workers</td>
</tr>
<tr>
<td>47-2221</td>
<td>Structural Iron and Steel Workers</td>
</tr>
<tr>
<td>47-4011</td>
<td>Construction and Building Inspectors</td>
</tr>
<tr>
<td>49-1011</td>
<td>First-Line Supervisors of Mechanics, Installers, and Repairers</td>
</tr>
<tr>
<td>49-2011</td>
<td>Computer, Automated Teller, and Office Machine Repairers</td>
</tr>
<tr>
<td>49-2022</td>
<td>Telecommunications Equipment Installers and Repairers, Except Line Installers</td>
</tr>
<tr>
<td>49-2091</td>
<td>Avionics Technicians</td>
</tr>
<tr>
<td>49-2094</td>
<td>Electrical and Electronics Repairers, Commercial and Industrial Equipment</td>
</tr>
<tr>
<td>49-2098</td>
<td>Security and Fire Alarm Systems Installers</td>
</tr>
<tr>
<td>49-3011</td>
<td>Aircraft Mechanics and Service Technicians</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>49-3021</td>
<td>Automotive Body and Related Repairers</td>
</tr>
<tr>
<td>49-3023</td>
<td>Automotive Service Technicians and Mechanics</td>
</tr>
<tr>
<td>49-3031</td>
<td>Bus and Truck Mechanics and Diesel Engine Specialists</td>
</tr>
<tr>
<td>49-3042</td>
<td>Mobile Heavy Equipment Mechanics, Except Engines</td>
</tr>
<tr>
<td>49-3093</td>
<td>Tire Repairers and Changers</td>
</tr>
<tr>
<td>49-9012</td>
<td>Control and Valve Installers and Repairers, Except Mechanical Door</td>
</tr>
<tr>
<td>49-9021</td>
<td>Heating, Air Conditioning, and Refrigeration Mechanics and Installers</td>
</tr>
<tr>
<td>49-9031</td>
<td>Home Appliance Repairers</td>
</tr>
<tr>
<td>49-9041</td>
<td>Industrial Machinery Mechanics</td>
</tr>
<tr>
<td>49-9043</td>
<td>Maintenance Workers, Machinery</td>
</tr>
<tr>
<td>49-9051</td>
<td>Electrical Power-Line Installers and Repairers</td>
</tr>
<tr>
<td>49-9052</td>
<td>Telecommunications Line Installers and Repairers</td>
</tr>
<tr>
<td>49-9062</td>
<td>Medical Equipment Repairers</td>
</tr>
<tr>
<td>49-9071</td>
<td>Maintenance and Repair Workers, General</td>
</tr>
<tr>
<td>49-9096</td>
<td>Riggers</td>
</tr>
<tr>
<td>49-9098</td>
<td>Helpers--Installation, Maintenance, and Repair Workers</td>
</tr>
<tr>
<td>51-1011</td>
<td>First-Line Supervisors of Production and Operating Workers</td>
</tr>
<tr>
<td>51-3011</td>
<td>Bakers</td>
</tr>
<tr>
<td>51-3021</td>
<td>Butchers and Meat Cutters</td>
</tr>
<tr>
<td>51-3092</td>
<td>Food Batchmakers</td>
</tr>
<tr>
<td>51-4031</td>
<td>Cutting, Punching, and Press Machine Setters, Operators, and Tenders, Metal and Plastic</td>
</tr>
<tr>
<td>51-4033</td>
<td>Grinding, Lapping, Polishing, and Buffing Machine Tool Setters, Operators, and Tenders, Metal and Plastic</td>
</tr>
<tr>
<td>51-4034</td>
<td>Lathe and Turning Machine Tool Setters, Operators, and Tenders, Metal and Plastic</td>
</tr>
<tr>
<td>51-4041</td>
<td>Machinists</td>
</tr>
<tr>
<td>51-4072</td>
<td>Molding, Coremaking, and Casting Machine Setters, Operators, and Tenders, Metal and Plastic</td>
</tr>
<tr>
<td>51-4111</td>
<td>Tool and Die Makers</td>
</tr>
<tr>
<td>Group Code</td>
<td>Occupation Description</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
</tr>
<tr>
<td>51-4121</td>
<td>Welders, Cutters, Solderers, and Brazers</td>
</tr>
<tr>
<td>51-4191</td>
<td>Heat Treating Equipment Setters, Operators, and Tenders, Metal and Plastic</td>
</tr>
<tr>
<td>51-5111</td>
<td>Prepress Technicians and Workers</td>
</tr>
<tr>
<td>51-5112</td>
<td>Printing Press Operators</td>
</tr>
<tr>
<td>51-5113</td>
<td>Print Binding and Finishing Workers</td>
</tr>
<tr>
<td>51-6011</td>
<td>Laundry and Dry-Cleaning Workers</td>
</tr>
<tr>
<td>51-6021</td>
<td>Pressers, Textile, Garment, and Related Materials</td>
</tr>
<tr>
<td>51-6031</td>
<td>Sewing Machine Operators</td>
</tr>
<tr>
<td>51-6093</td>
<td>Upholsterers</td>
</tr>
<tr>
<td>51-7011</td>
<td>Cabinetmakers and Bench Carpenters</td>
</tr>
<tr>
<td>51-7042</td>
<td>Woodworking Machine Setters, Operators, and Tenders, Except Sawing</td>
</tr>
<tr>
<td>51-8021</td>
<td>Stationary Engineers and Boiler Operators</td>
</tr>
<tr>
<td>51-8031</td>
<td>Water and Wastewater Treatment Plant and System Operators</td>
</tr>
<tr>
<td>51-9012</td>
<td>Separating, Filtering, Clarifying, Precipitating, and Still Machine Setters, Operators, and Tenders</td>
</tr>
<tr>
<td>51-9023</td>
<td>Mixing and Blending Machine Setters, Operators, and Tenders</td>
</tr>
<tr>
<td>51-9061</td>
<td>Inspectors, Testers, Sorters, Samplers, and Weighers</td>
</tr>
<tr>
<td>51-9081</td>
<td>Dental Laboratory Technicians</td>
</tr>
<tr>
<td>51-9111</td>
<td>Packaging and Filling Machine Operators and Tenders</td>
</tr>
<tr>
<td>51-9123</td>
<td>Painting, Coating, and Decorating Workers</td>
</tr>
<tr>
<td>51-9151</td>
<td>Photographic Process Workers and Processing Machine Operators</td>
</tr>
<tr>
<td>51-9192</td>
<td>Cleaning, Washing, and Metal Pickling Equipment Operators and Tenders</td>
</tr>
<tr>
<td>51-9195</td>
<td>Molders, Shapers, and Casters, Except Metal and Plastic</td>
</tr>
<tr>
<td>51-9198</td>
<td>Helpers--Production Workers</td>
</tr>
<tr>
<td>53-3031</td>
<td>Driver/Sales Workers</td>
</tr>
<tr>
<td>53-3032</td>
<td>Heavy and Tractor-Trailer Truck Drivers</td>
</tr>
<tr>
<td>53-3033</td>
<td>Light Truck or Delivery Services Drivers</td>
</tr>
<tr>
<td>53-6031</td>
<td>Automotive and Watercraft Service Attendants</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
</tr>
<tr>
<td>53-7051</td>
<td>Industrial Truck and Tractor Operators</td>
</tr>
<tr>
<td>53-7061</td>
<td>Cleaners of Vehicles and Equipment</td>
</tr>
<tr>
<td>53-7062</td>
<td>Laborers and Freight, Stock, and Material Movers, Hand</td>
</tr>
<tr>
<td>53-7064</td>
<td>Packers and Packagers, Hand</td>
</tr>
<tr>
<td>53-7081</td>
<td>Refuse and Recyclable Material Collectors</td>
</tr>
</tbody>
</table>
APPENDIX C

2010 BLS Report Occupations Removed from Final Dataset

<table>
<thead>
<tr>
<th>OCC_CODE</th>
<th>OCC_TITLE</th>
<th>OCC_CODE</th>
<th>OCC_TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>00-0000</td>
<td>All Occupations</td>
<td>11-0000</td>
<td>Management Occupations</td>
</tr>
<tr>
<td>11-1011</td>
<td>Chief Executives</td>
<td>11-2031</td>
<td>Public Relations and Fundraising Managers</td>
</tr>
<tr>
<td>11-3011</td>
<td>Administrative Services Managers</td>
<td>11-9033</td>
<td>Education Administrators, Postsecondary</td>
</tr>
<tr>
<td>11-9039</td>
<td>Education Administrators, All Other</td>
<td>11-9081</td>
<td>Lodging Managers</td>
</tr>
<tr>
<td>11-9131</td>
<td>Postmasters and Mail Superintendents</td>
<td>11-9151</td>
<td>Social and Community Service Managers</td>
</tr>
<tr>
<td>11-9161</td>
<td>Emergency Management Directors</td>
<td>11-9199</td>
<td>Managers, All Other</td>
</tr>
<tr>
<td>13-0000</td>
<td>Business and Financial Operations Occupations</td>
<td>13-1011</td>
<td>Agents and Business Managers of Artists, Performers, and Athletes</td>
</tr>
<tr>
<td>13-1021</td>
<td>Buyers and Purchasing Agents, Farm Products</td>
<td>13-1022</td>
<td>Wholesale and Retail Buyers, Except Farm Products</td>
</tr>
<tr>
<td>13-1023</td>
<td>Purchasing Agents, Except Wholesale, Retail, and Farm Products</td>
<td>13-1032</td>
<td>Insurance Appraisers, Auto Damage</td>
</tr>
<tr>
<td>13-1078</td>
<td>Human Resources, Training, and Labor Relations Specialists, All Other*</td>
<td>13-1199</td>
<td>Business Operations Specialists, All Other*</td>
</tr>
<tr>
<td>13-2051</td>
<td>Financial Analysts</td>
<td>13-2071</td>
<td>Credit Counselors</td>
</tr>
<tr>
<td>13-2082</td>
<td>Tax Preparers</td>
<td>13-2099</td>
<td>Financial Specialists, All Other</td>
</tr>
<tr>
<td>15-0000</td>
<td>Computer and Mathematical Occupations</td>
<td>15-1111</td>
<td>Computer and Information Research Scientists</td>
</tr>
<tr>
<td>15-1131</td>
<td>Computer Programmers</td>
<td>15-1132</td>
<td>Software Developers, Applications</td>
</tr>
<tr>
<td>15-1133</td>
<td>Software Developers, Systems Software</td>
<td>15-1141</td>
<td>Database Administrators</td>
</tr>
<tr>
<td>15-1179</td>
<td>Information Security Analysts, Web Developers, and Computer Network Architects</td>
<td>15-1799</td>
<td>Computer Occupations, All Other*</td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-2011</td>
<td>Actuaries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-2021</td>
<td>Mathematicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-2041</td>
<td>Statisticians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15-2099</td>
<td>Mathematical Science Occupations, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-0000</td>
<td>Architecture and Engineering Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-1012</td>
<td>Landscape Architects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-2121</td>
<td>Marine Engineers and Naval Architects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-2161</td>
<td>Nuclear Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-3021</td>
<td>Aerospace Engineering and Operations Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-3024</td>
<td>Electro-Mechanical Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-3029</td>
<td>Engineering Technicians, Except Drafters, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-0000</td>
<td>Life, Physical, and Social Science Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-1012</td>
<td>Food Scientists and Technologists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-1013</td>
<td>Soil and Plant Scientists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-1022</td>
<td>Microbiologists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-1023</td>
<td>Zoologists and Wildlife Biologists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-1031</td>
<td>Conservation Scientists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-1099</td>
<td>Life Scientists, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-2021</td>
<td>Atmospheric and Space Scientists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-2043</td>
<td>Hydrologists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-3011</td>
<td>Economists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-3022</td>
<td>Survey Researchers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-3031</td>
<td>Clinical, Counseling, and School Psychologists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-3039</td>
<td>Psychologists, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-3091</td>
<td>Anthropologists and Archeologists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-3093</td>
<td>Historians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-4011</td>
<td>Agricultural and Food Science Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-4061</td>
<td>Social Science Research Assistants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-4091</td>
<td>Environmental Science and Protection Technicians, Including Health</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-4092</td>
<td>Forensic Science Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19-4093</td>
<td>Forest and Conservation Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-0000</td>
<td>Community and Social Service Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-1011</td>
<td>Substance Abuse and Behavioral Disorder Counselors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-1014</td>
<td>Mental Health Counselors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-1019</td>
<td>Counselors, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-1023</td>
<td>Mental Health and Substance Abuse Social Workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-1029</td>
<td>Social Workers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-1091</td>
<td>Health Educators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-1798</td>
<td>Community and Social Service Specialists, All Other*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21-2099</td>
<td>Religious Workers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-0000</td>
<td>Legal Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-1012</td>
<td>Judicial Law Clerks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-1022</td>
<td>Arbitrators, Mediators, and Conciliators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23-2093</td>
<td>Title Examiners, Abstractors, and Searchers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-0000</td>
<td>Education, Training, and Library Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-1031</td>
<td>Architecture Teachers, Postsecondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-1051</td>
<td>Atmospheric, Earth, Marine, and Space Sciences Teachers, Postsecondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-1053</td>
<td>Environmental Science Teachers, Postsecondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-1069</td>
<td>Social Sciences Teachers, Postsecondary, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-1071</td>
<td>Health Specialties Teachers, Postsecondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-1072</td>
<td>Nursing Instructors and Teachers, Postsecondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-1081</td>
<td>Education Teachers, Postsecondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-1082</td>
<td>Library Science Teachers, Postsecondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-1111</td>
<td>Criminal Justice and Law Enforcement Teachers, Postsecondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-1124</td>
<td>Foreign Language and Literature Teachers, Postsecondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-1126</td>
<td>Philosophy and Religion Teachers, Postsecondary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-1191</td>
<td>Graduate Teaching Assistants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-1199</td>
<td>Postsecondary Teachers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-2032</td>
<td>Career/Technical Education Teachers, Secondary School</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-2041</td>
<td>Special Education Teachers, Preschool, Kindergarten, and Elementary School*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-2053</td>
<td>Special Education Teachers, Middle School</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-2054</td>
<td>Special Education Teachers, Secondary School</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-3011</td>
<td>Adult Basic and Secondary Education and Literacy Teachers and Instructors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-3999</td>
<td>Teachers and Instructors, All Other*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-4013</td>
<td>Museum Technicians and Conservators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-9011</td>
<td>Audio-Visual and Multimedia Collections Specialists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-9031</td>
<td>Instructional Coordinators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25-9041</td>
<td>Teacher Assistants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-0000</td>
<td>Arts, Design, Entertainment, Sports, and Media Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-1012</td>
<td>Craft Artists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-1014</td>
<td>Multimedia Artists and Animators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-1029</td>
<td>Designers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-2011</td>
<td>Actors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-2023</td>
<td>Umpires, Referees, and Other Sports Officials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-2032</td>
<td>Choreographers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-2042</td>
<td>Musicians and Singers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-2099</td>
<td>Entertainers and Performers, Sports and Related Workers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-3011</td>
<td>Radio and Television Announcers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-3012</td>
<td>Public Address System and Other Announcers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-3021</td>
<td>Broadcast News Analysts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-3022</td>
<td>Reporters and Correspondents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-3091</td>
<td>Interpreters and Translators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-4011</td>
<td>Audio and Video Equipment Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-4014</td>
<td>Sound Engineering Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-4031</td>
<td>Camera Operators, Television, Video, and Motion Picture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-4032</td>
<td>Film and Video Editors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27-4099</td>
<td>Healthcare and Communication Equipment Workers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-0000</td>
<td>Healthcare Practitioners and Technical Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1011</td>
<td>Chiropractors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1023</td>
<td>Orthodontists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1029</td>
<td>Dentists, All Other Specialists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1061</td>
<td>Anesthesiologists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1062</td>
<td>Family and General Practitioners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1063</td>
<td>Internists, General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1064</td>
<td>Obstetricians and Gynecologists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1065</td>
<td>Pediatricians, General</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1066</td>
<td>Psychiatrists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1067</td>
<td>Surgeons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1069</td>
<td>Physicians and Surgeons, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1081</td>
<td>Podiatrists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1111</td>
<td>Registered Nurses*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1128</td>
<td>Therapists, All Other*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1181</td>
<td>Audiologists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-1199</td>
<td>Health Diagnosing and Treating Practitioners, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-2011</td>
<td>Medical and Clinical Laboratory Technologists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-2012</td>
<td>Medical and Clinical Laboratory Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-2037</td>
<td>Radiologic Technologists and Technicians*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-2041</td>
<td>Emergency Medical Technicians and Paramedics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-2053</td>
<td>Psychiatric Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-2054</td>
<td>Respiratory Therapy Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-2056</td>
<td>Veterinary Technologists and Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-2071</td>
<td>Medical Records and Health Information Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-2799</td>
<td>Health Technologists and Technicians, All Other*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-9011</td>
<td>Occupational Health and Safety Specialists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-9012</td>
<td>Occupational Health and Safety Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-9091</td>
<td>Athletic Trainers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29-9799</td>
<td>Healthcare Practitioners and Technical Workers, All Other*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-0000</td>
<td>Healthcare Support Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-1011</td>
<td>Home Health Aides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-1012</td>
<td>Nursing Aides, Orderlies, and Attendants*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-1013</td>
<td>Psychiatric Aides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-9093</td>
<td>Medical Equipment Preparers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31-9799</td>
<td>Healthcare Support Workers, All Other*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-0000</td>
<td>Protective Service Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-1012</td>
<td>First-Line Supervisors of Police and Detectives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-1099</td>
<td>First-Line Supervisors of Protective Service Workers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-2011</td>
<td>Firefighters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-2021</td>
<td>Fire Inspectors and Investigators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-3041</td>
<td>Parking Enforcement Workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-3051</td>
<td>Police and Sheriff's Patrol Officers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-9011</td>
<td>Animal Control Workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-9021</td>
<td>Private Detectives and Investigators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-9093</td>
<td>Transportation Security Screeners* (federal only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33-9099</td>
<td>Protective Service Workers, All Other *</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-0000</td>
<td>Food Preparation and Serving Related Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-1011</td>
<td>Chefs and Head Cooks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-2019</td>
<td>Cooks, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-3021</td>
<td>Combined Food Preparation and Serving Workers, Including Fast Food</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-3022</td>
<td>Counter Attendants, Cafeteria, Food Concession, and Coffee Shop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-9099</td>
<td>Food Preparation and Serving Related Workers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-0000</td>
<td>Building and Grounds Cleaning and Maintenance Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-3012</td>
<td>Pesticide Handlers, Sprayers, and Applicators, Vegetation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-3013</td>
<td>Tree Trimmers and Pruners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37-3019</td>
<td>Grounds Maintenance Workers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-0000</td>
<td>Personal Care and Service Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-1011</td>
<td>Gaming Supervisors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-1012</td>
<td>Slot Supervisors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-1021</td>
<td>First-Line Supervisors of Personal Service Workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-2011</td>
<td>Animal Trainers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-3012</td>
<td>Gaming and Sports Book Writers and Runners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-3019</td>
<td>Gaming Service Workers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-3021</td>
<td>Motion Picture Projectionists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-3099</td>
<td>Entertainment Attendants and Related Workers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-4021</td>
<td>Funeral Attendants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-4831</td>
<td>Funeral Service Managers, Directors, Morticians, and Undertakers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-5093</td>
<td>Shampooers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAICS Code</td>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-7011</td>
<td>Tour Guides and Escorts</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-9021</td>
<td>Personal Care Aides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39-9099</td>
<td>Personal Care and Service Workers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-0000</td>
<td>Sales and Related Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-3099</td>
<td>Sales Representatives, Services, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-9021</td>
<td>Real Estate Brokers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-9022</td>
<td>Real Estate Sales Agents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-9091</td>
<td>Door-to-Door Sales Workers, News and Street Vendors, and Related Workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41-9799</td>
<td>Sales and Related Workers, All Other*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-0000</td>
<td>Office and Administrative Support Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-2011</td>
<td>Switchboard Operators, Including Answering Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-4021</td>
<td>Correspondence Clerks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-4141</td>
<td>New Accounts Clerks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-5041</td>
<td>Meter Readers, Utilities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-5081</td>
<td>Stock Clerks and Order Fillers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-9011</td>
<td>Computer Operators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-9031</td>
<td>Desktop Publishers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-9081</td>
<td>Proofreaders and Copy Markers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-9111</td>
<td>Statistical Assistants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43-9799</td>
<td>Office and Administrative Support Workers, All Other*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-0000</td>
<td>Farming, Fishing, and Forestry Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-2041</td>
<td>Graders and Sorters, Agricultural Products</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45-4011</td>
<td>Forest and Conservation Workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-0000</td>
<td>Construction and Extraction Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-2011</td>
<td>Boilermakers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-2022</td>
<td>Stonemasons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-2042</td>
<td>Floor Layers, Except Carpet, Wood, and Hard Tiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-2043</td>
<td>Floor Sanders and Finishers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-2044</td>
<td>Tile and Marble Setters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-2053</td>
<td>Terrazzo Workers and Finishers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-2121</td>
<td>Glaziers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-2131</td>
<td>Insulation Workers, Floor, Ceiling, and Wall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-2151</td>
<td>Pipelayers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-2171</td>
<td>Reinforcing Iron and Rebar Workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-3011</td>
<td>Helpers--Brickmasons, Blockmasons, Stonemasons, and Tile and Marble Setters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-3012</td>
<td>Helpers--Carpenters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-3013</td>
<td>Helpers--Electricians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-3014</td>
<td>Helpers--Painters, Paperhangers, Plasterers, and Stucco Masons</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-3015</td>
<td>Helpers--Pipayers, Plumbers, Pipefitters, and Steamfitters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-3016</td>
<td>Helpers--Roofers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-3019</td>
<td>Helpers, Construction Trades, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-4041</td>
<td>Hazardous Materials Removal Workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-4051</td>
<td>Highway Maintenance Workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-4071</td>
<td>Septic Tank Servicers and Sewer Pipe Cleaners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-4799</td>
<td>Construction and Related Workers, All Other*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47-5081</td>
<td>Helpers--Extraction Workers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-0000</td>
<td>Installation, Maintenance, and Repair Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-2092</td>
<td>Electric Motor, Power Tool, and Related Repairers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-2093</td>
<td>Electrical and Electronics Installers and Repairers, Transportation Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-2095</td>
<td>Electrical and Electronics Repairers, Powerhouse, Substation, and Relay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-2096</td>
<td>Electronic Equipment Installers and Repairers, Motor Vehicles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-2097</td>
<td>Electronic Home Entertainment Equipment Installers and Repairers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-3041</td>
<td>Farm Equipment Mechanics and Service Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-3051</td>
<td>Motorboat Mechanics and Service Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-3052</td>
<td>Motorcycle Mechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-3053</td>
<td>Outdoor Power Equipment and Other Small Engine Mechanics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-3091</td>
<td>Bicycle Repairers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-3092</td>
<td>Recreational Vehicle Service Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-9011</td>
<td>Mechanical Door Repairers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-9044</td>
<td>Millwrights</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-9069</td>
<td>Precision Instrument and Equipment Repairers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-9091</td>
<td>Coin, Vending, and Amusement Machine Servicers and Repairers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-9092</td>
<td>Commercial Divers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-9094</td>
<td>Locksmiths and Safe Repairers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49-9799</td>
<td>Installation, Maintenance, and Repair Workers, All Other*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-0000</td>
<td>Production Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-2021</td>
<td>Coil Winders, Tapers, and Finishers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-2022</td>
<td>Electrical and Electronic Equipment Assemblers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-2023</td>
<td>Electromechanical Equipment Assemblers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-2031</td>
<td>Engine and Other Machine Assemblers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-2041</td>
<td>Structural Metal Fabricators and Fitters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-2091</td>
<td>Fiberglass Laminators and Fabricators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-2092</td>
<td>Team Assemblers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-2099</td>
<td>Assemblers and Fabricators, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-3022</td>
<td>Meat, Poultry, and Fish Cutters and Trimmers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-3093</td>
<td>Food Cooking Machine Operators and Tenders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-4011</td>
<td>Computer-Controlled Machine Tool Operators, Metal and Plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-4012</td>
<td>Computer Numerically Controlled Machine Tool Programmers, Metal and Plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-4021</td>
<td>Extruding and Drawing Machine Setters, Operators, and Tenders, Metal and Plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-4022</td>
<td>Forging Machine Setters, Operators, and Tenders, Metal and Plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-4023</td>
<td>Rolling Machine Setters, Operators, and Tenders, Metal and Plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-4032</td>
<td>Drilling and Boring Machine Tool Setters, Operators, and Tenders, Metal and Plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-4035</td>
<td>Milling and Planing Machine Setters, Operators, and Tenders, Metal and Plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-4061</td>
<td>Model Makers, Metal and Plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-4081</td>
<td>Multiple Machine Tool Setters, Operators, and Tenders, Metal and Plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-4122</td>
<td>Welding, Soldering, and Brazing Machine Setters, Operators, and Tenders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-4192</td>
<td>Layout Workers, Metal and Plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-4193</td>
<td>Plating and Coating Machine Setters, Operators, and Tenders, Metal and Plastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-4194</td>
<td>Tool Grinders, Filers, and Sharpeners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-4199</td>
<td>Metal Workers and Plastic Workers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-6041</td>
<td>Shoe and Leather Workers and Repairers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-6051</td>
<td>Sewers, Hand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-6052</td>
<td>Tailors, Dressmakers, and Custom Sewers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-6062</td>
<td>Textile Cutting Machine Setters, Operators, and Tenders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-6063</td>
<td>Textile Knitting and Weaving Machine Setters, Operators, and Tenders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-6092</td>
<td>Fabric and Apparel Patternmakers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-7021</td>
<td>Furniture Finishers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-7041</td>
<td>Sawing Machine Setters, Operators, and Tenders, Wood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-7099</td>
<td>Woodworkers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-8012</td>
<td>Power Distributors and Dispatchers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-8013</td>
<td>Power Plant Operators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-8091</td>
<td>Chemical Plant and System Operators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-8099</td>
<td>Plant and System Operators, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-9011</td>
<td>Chemical Equipment Operators and Tenders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-9021</td>
<td>Crushing, Grinding, and Polishing Machine Setters, Operators, and Tenders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-9022</td>
<td>Grinding and Polishing Workers, Hand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-9031</td>
<td>Cutters and Trimmers, Hand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-9032</td>
<td>Cutting and Slicing Machine Setters, Operators, and Tenders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-9041</td>
<td>Extruding, Forming, Pressing, and Compacting Machine Setters, Operators, and Tenders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-9083</td>
<td>Ophthalmic Laboratory Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-9121</td>
<td>Coating, Painting, and Spraying Machine Setters, Operators, and Tenders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-9122</td>
<td>Painters, Transportation Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry Code</td>
<td>Occupation Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-9141</td>
<td>Semiconductor Processors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-9194</td>
<td>Etchers and Engravers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>51-9399</td>
<td>Production Workers, All Other*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-0000</td>
<td>Transportation and Material Moving Occupations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-1011</td>
<td>Aircraft Cargo Handling Supervisors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-1021</td>
<td>First-Line Supervisors of Helpers, Laborers, and Material Movers, Hand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-1031</td>
<td>First-Line Supervisors of Transportation and Material-Moving Machine and Vehicle Operators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-2012</td>
<td>Commercial Pilots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-2022</td>
<td>Airfield Operations Specialists</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-3011</td>
<td>Ambulance Drivers and Attendants, Except Emergency Medical Technicians</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-3021</td>
<td>Bus Drivers, Transit and Intercity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-3022</td>
<td>Bus Drivers, School or Special Client</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-3041</td>
<td>Taxi Drivers and Chauffeurs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-3099</td>
<td>Motor Vehicle Operators, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-5011</td>
<td>Sailors and Marine Oilers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-5021</td>
<td>Captains, Mates, and Pilots of Water Vessels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-5031</td>
<td>Ship Engineers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-6021</td>
<td>Parking Lot Attendants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-6051</td>
<td>Transportation Inspectors</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-6061</td>
<td>Transportation Attendants, Except Flight Attendants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-6099</td>
<td>Transportation Workers, All Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-7011</td>
<td>Conveyor Operators and Tenders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-7021</td>
<td>Crane and Tower Operators</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-7063</td>
<td>Machine Feeders and Offbearers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>53-7199</td>
<td>Material Moving Workers, All Other</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>