Document Type
Article
Publication Date
3-31-2020
Journal Title
Environmental Science and Technology
First Page
1
Last Page
19
DOI
https://pubs.acs.org/doi/10.1021/acs.est.9b07852
Version
Pre-print: the initial article submitted to the journal for consideration (prior to peer review)
Disciplines
Chemistry | Environmental Chemistry
Abstract
Oxalic acid and sulfate salts are major components of aerosol particles. Here, we explore the potential for their respective precursor species, glyoxal and SO2, to form atmospheric brown carbon via aqueous-phase reactions in a series of bulk aqueous and flow chamber aerosol experiments. In bulk aqueous solutions, UV- and visible-light-absorbing products are observed at pH 3–4 and 5–6, respectively, with small but detectable yields of hydroxyquinone and polyketone products formed, especially at pH 6. Hydroxymethanesulfonate (HMS), C2, and C3 sulfonates are major products detected by electrospray ionization mass spectrometry (ESI-MS) at pH 5. Past studies have assumed that the reaction of formaldehyde and sulfite was the only atmospheric source of HMS. In flow chamber experiments involving sulfite aerosol and gas-phase glyoxal with only 1 min residence times, significant aerosol growth is observed. Rapid brown carbon formation is seen with aqueous aerosol particles at >80% relative humidity (RH). Brown carbon formation slows at 50–60% RH and when the aerosol particles are acidified with sulfuric acid but stops entirely only under dry conditions. This chemistry may therefore contribute to brown carbon production in cloud-processed pollution plumes as oxidizing volatile organic compounds (VOCs) interact with SO2 and water.
Digital USD Citation
De Haan, David O.; Jansen, Kevin; Rynaski, Alec D.; Sueme, W. Ryan P.; Torkelson, Ashley K.; Czer, Eric T.; Kim, Alexander K.; Rafla, Michael A.; De Haan, Audrey C.; and Tolbert, Margaret A., "Brown Carbon Production by Aqueous-Phase Interactions of Glyoxal and SO2" (2020). Chemistry and Biochemistry: Faculty Scholarship. 36.
https://digital.sandiego.edu/chemistry_facpub/36
Notes
© 2020 American Chemical Society
Published in final form at:
De Haan, D. O.; Jansen, K.; Rynaski, A. D.; Sueme, W. R. P.; Torkelson, A. K.; Czer, E. T.; Kim, A. K.; Rafla, M. A.; De Haan, A. C.; Tolbert, M. A., Brown Carbon Production by Aqueous-Phase Interactions of Glyoxal and SO2. Environ. Sci. Technol. 2020. doi: 10.1021/acs.est.9b07852