Document Type

Article

Publication Date

12-1-2000

Journal Title

The Astrophysical Journal

Volume Number

545

Issue Number

1

First Page

494

Last Page

503

DOI

10.1086/317771

Version

Publisher PDF: the final published version of the article, with professional formatting and typesetting

Disciplines

Physics

Abstract

The fate of small regions of vorticity in a barotropic model of the protoplanetary nebula is investigated over thousands of years using a finite difference model. It is found that the coherence time for a small island of vorticity depends on its size, strength, orientation, and radial location in the nebula. Anticyclonic vorticity retains its coherence for longer times than cyclonic vorticity due to favorable interactions with the Keplerian shear flow. Rossby waves are generated as a result of mean vorticity gradients across the disk. The two-dimensional nebula evolves from discrete vortices into an axisymmetric flow consisting of small-amplitude vortex sheets at the radial locations of the initial vorticity. These vortex sheets induce an additional small, potential flow velocity superimposed on the Keplerian rotation curve.

Included in

Physics Commons

Share

COinS